RESUMO
ABSTRACT: In several tumor subtypes, an increased infiltration of Vγ9Vδ2 T cells has been shown to have the highest prognostic value compared with other immune subsets. In acute myeloid leukemia (AML), similar findings have been based solely on the inference of transcriptomic data and have not been assessed with respect to confounding factors. This study aimed at determining, by immunophenotypic analysis (flow or mass cytometry) of peripheral blood from patients with AML at diagnosis, the prognostic impact of Vγ9Vδ2 T-cell frequency. This was adjusted for potential confounders (age at diagnosis, disease status, European LeukemiaNet classification, leukocytosis, and allogeneic hematopoietic stem cell transplantation as a time-dependent covariate). The cohort was composed of 198 patients with newly diagnosed (ND) AML. By univariate analysis, patients with lower Vγ9Vδ2 T cells at diagnosis had significantly lower 5-year overall and relapse-free survivals. These results were confirmed in multivariate analysis (hazard ratio [HR], 1.55 [95% confidence interval (CI), 1.04-2.30]; P = .030 and HR, 1.64 [95% CI, 1.06-2.53]; P = .025). Immunophenotypic alterations observed in patients with lower Vγ9Vδ2 T cells included a loss of some cytotoxic Vγ9Vδ2 T-cell subsets and a decreased expression of butyrophilin 3A on the surface of blasts. Samples expanded regardless of their Vγ9Vδ2 T-cell levels and displayed similar effector functions in vitro. This study confirms the prognostic value of elevated Vγ9Vδ2 T cells among lymphocytes in patients with ND AML. These results provide a strong rationale to consider consolidation protocols aiming at enhancing Vγ9Vδ2 T-cell responses.
Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Pessoa de Meia-Idade , Feminino , Masculino , Adulto , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Idoso , Prognóstico , Imunofenotipagem , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
The success of immunotherapy has highlighted the critical role of the immune microenvironment in acute lymphoblastic leukemia (ALL); however, the immune landscape in ALL remains incompletely understood and most studies have focused on conventional T cells or NK cells. This study investigated the prognostic impact of circulating γδ T-cell alterations using high-dimensional analysis in a cohort of newly diagnosed adult ALL patients (10 B-ALL; 9 Philadelphia+ ALL; 9 T-ALL). Our analysis revealed common alterations in CD8+ T cells and γδ T cells of relapsed patients, including accumulation of early stage differentiation and increased expression of BTLA and CD73. We demonstrated that the circulating γδ T-cell signature was the most discriminating between relapsed and disease-free groups. In addition, Vδ2 T-cell alterations strongly discriminated patients by relapse status. Taken together, these data highlight the role of ɣδ T cells in adult ALL patients, among whom Vδ2 T cells may be a pivotal contributor to T-cell immunity in ALL. Our findings provide a strong rationale for further monitoring and potentiating Vδ2 T cells in ALL, including in the autologous setting.
Assuntos
Linfócitos Intraepiteliais , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Adulto , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Prognóstico , Doença Aguda , Microambiente TumoralRESUMO
Herein, we report a novel approach for the design of a colorimetric aptasensor, relying on a Dye Salt Aggregation-based Colorimetric Oligonucleotide assay (DYSACO assay). This method is based on the use of an intercalating agent, Nile Blue (NB), whose aggregation capacities (and thus modification of its absorption spectrum) are drastically amplified by adding salts to the working solution. The presence of an aptamer could protect NB from such aggregation process due to its intercalation into double-stranded DNA and/or interaction with nucleobases. In response to the addition of the specific ligand, the competition between NB and the target for binding to the aptamer occurs, resulting in an increase in the dye salt aggregation and then in the blue-to-blank color change of the solution. The proof-of-principle was demonstrated by employing the anti-l-tyrosinamide aptamer and the assay was successfully applied to the trace enantiomer detection, allowing the detection of an enantiomeric impurity down to approximately 2% in a non-racemic sample. Through a reversed mechanism based on the increased capture of NB by DNA upon analyte binding, the sensing platform was further demonstrated for the Hg(II) detection. Water samples of different origin were spiked with Hg(II) analyte at final range concentrations comprised between (0.5-15 µM). An excellent overall recovery of 122 ± 14%; 105 ± 14%; 99 ± 9%; was respectively obtained from river, tap and mineral water, suggesting that the sensor can be used under real sample conditions. The assay was also shown to work for sensing the ochratoxin A and d-arginine vasopressin compounds, revealing its simplicity and generalizability potentialities.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Mercúrio , Nanopartículas Metálicas , Colorimetria/métodos , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Ouro/química , Cloreto de Sódio , DNA/química , Peptídeos , Cloreto de Sódio na Dieta , Aptâmeros de Nucleotídeos/químicaRESUMO
PURPOSE: Immune checkpoint inhibitors (ICI) have revolutionized the treatment of non-small cell lung cancer (NSCLC), but predictive biomarkers of their efficacy are imperfect. The primary objective is to evaluate circulating immune predictors of pembrolizumab efficacy in patients with advanced NSCLC. EXPERIMENTAL DESIGN: We used high-dimensional mass cytometry (CyTOF) in baseline blood samples of patients with advanced NSCLC treated with pembrolizumab. CyTOF data were analyzed by machine-learning algorithms (Citrus, tSNE) and confirmed by manual gating followed by principal component analysis (between-group analysis). RESULTS: We analyzed 27 patients from the seminal KEYNOTE-001 study (median follow-up of 60.6 months). We demonstrate that blood baseline frequencies of classical monocytes, natural killer (NK) cells, and ICOS+ CD4+ T cells are significantly associated with improved objective response rates, progression-free survival, and overall survival (OS). In addition, we report that a baseline immune peripheral score combining these three populations strongly predicts pembrolizumab efficacy (OS: HR = 0.25; 95% confidence interval = 0.12-0.51; P < 0.0001). CONCLUSIONS: As this immune monitoring is easy in routine practice, we anticipate our findings may improve prediction of ICI benefit in patients with advanced NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Monócitos , Linfócitos T CD4-Positivos , Células Matadoras Naturais , Proteína Coestimuladora de Linfócitos T InduzíveisRESUMO
Natural killer (NK) cells are major antileukemic immune effectors. Leukemic blasts have a negative impact on NK cell function and promote the emergence of phenotypically and functionally impaired NK cells. In the current work, we highlight an accumulation of CD56-CD16+ unconventional NK cells in acute myeloid leukemia (AML), an aberrant subset initially described as being elevated in patients chronically infected with HIV-1. Deep phenotyping of NK cells was performed using peripheral blood from patients with newly diagnosed AML (n = 48, HEMATOBIO cohort, NCT02320656) and healthy subjects (n = 18) by mass cytometry. We showed evidence of a moderate to drastic accumulation of CD56-CD16+ unconventional NK cells in 27% of patients. These NK cells displayed decreased expression of NKG2A as well as the triggering receptors NKp30 and NKp46, in line with previous observations in HIV-infected patients. High-dimensional characterization of these NK cells highlighted a decreased expression of three additional major triggering receptors required for NK cell activation, NKG2D, DNAM-1, and CD96. A high proportion of CD56-CD16+ NK cells at diagnosis was associated with an adverse clinical outcome and decreased overall survival (HR = 0.13; P = 0.0002) and event-free survival (HR = 0.33; P = 0.018) and retained statistical significance in multivariate analysis. Pseudotime analysis of the NK cell compartment highlighted a disruption of the maturation process, with a bifurcation from conventional NK cells toward CD56-CD16+ NK cells. Overall, our data suggest that the accumulation of CD56-CD16+ NK cells may be the consequence of immune escape from innate immunity during AML progression.
Assuntos
Citometria de Fluxo/métodos , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Antígenos CD/imunologia , Humanos , Imunofenotipagem , Ativação Linfocitária/imunologia , Indução de Remissão , Resultado do TratamentoRESUMO
Natural Killer (NK) cells are potent anti-leukemic immune effectors. However, they display multiple defects in acute myeloid leukemia (AML) patients leading to reduced anti-tumor potential. Our limited understanding of the mechanisms underlying these defects hampers the development of strategies to restore NK cell potential. Here, we have used a mouse model of AML to gain insight into these mechanisms. We found that leukemia progression resulted in NK cell maturation defects and functional alterations. Next, we assessed NK cell cytokine signaling governing their behavior. We showed that NK cells from leukemic mice exhibit constitutive IL-15/mTOR signaling and type I IFN signaling. However, these cells failed to respond to IL-15 stimulation in vitro as illustrated by reduced activation of the mTOR pathway. Moreover, our data suggest that mTOR-mediated metabolic responses were reduced in NK cells from AML-bearing mice. Noteworthy, the reduction of mTOR-mediated activation of NK cells during AML development partially rescued NK cell metabolic and functional defects. Altogether, our data strongly suggest that NK cells from leukemic mice are metabolically and functionally exhausted as a result of a chronic cytokine activation, at least partially IL-15/mTOR signaling. NK cells from AML patients also displayed reduced IL-2/15Rß expression and showed cues of reduced metabolic response to IL-15 stimulation in vitro, suggesting that a similar mechanism might occur in AML patients. Our study pinpoints the dysregulation of cytokine stimulation pathways as a new mechanism leading to NK cell defects in AML.
Assuntos
Interleucina-15/farmacologia , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/imunologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-15/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genéticaRESUMO
NK cells are innate immune cells with inherent capabilities in both recognizing and killing cancer cells. NK cell phenotypes and functional alterations are being described with increasing precision among patients harboring various cancer types, emphasizing the critical role that NK cells play in antitumor immune responses. In addition, advances in understanding NK cell biology have improved our knowledge of such alterations, thereby expanding the potential exploitation of NK cells' anticancer capabilities. In this review, we present an overview of (1) the various types of NK cell alterations that may contribute to immune evasion in cancer patients and (2) the various strategies to improve NK cell-based anticancer immunotherapies, including pharmacologic modulation and/or genetic modification.