Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 14: 905, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24354426

RESUMO

BACKGROUND: Wheat gluten is important for the industrial quality of bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L.). Gluten proteins are also the source of immunogenic peptides that can trigger a T cell reaction in celiac disease (CD) patients, leading to inflammatory responses in the small intestine. Various peptides with three major T cell epitopes involved in CD are derived from alpha-gliadin fraction of gluten. Alpha-gliadins are encoded by a large multigene family and amino acid variation in the CD epitopes is known to influence the immunogenicity of individual gene family members. Current commercial methods of gluten detection are unable to distinguish between immunogenic and non-immunogenic CD epitope variants and thus to accurately quantify the overall CD epitope load of a given wheat variety. Such quantification is indispensable for correct selection of wheat varieties with low potential to cause CD. RESULTS: A 454 RNA-amplicon sequencing method was developed for alpha-gliadin transcripts encompassing the three major CD epitopes and their variants. The method was used to screen developing grains on plants of 61 different durum wheat cultivars and accessions. A dedicated sequence analysis pipeline returned a total of 304 unique alpha-gliadin transcripts, corresponding to a total of 171 'unique deduced protein fragments' of alpha-gliadins. The numbers of these fragments obtained in each plant were used to calculate quantitative and quantitative differences between the CD epitopes expressed in the endosperm of these wheat plants. A few plants showed a lower fraction of CD epitope-encoding alpha-gliadin transcripts, but none were free of CD epitopes. CONCLUSIONS: The dedicated 454 RNA-amplicon sequencing method enables 1) the grouping of wheat plants according to the genetic variation in alpha-gliadin transcripts, and 2) the screening for plants which are potentially less CD-immunogenic. The resulting alpha-gliadin sequence database will be useful as a reference in proteomics analysis regarding the immunogenic potential of mature wheat grains.


Assuntos
Doença Celíaca/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Triticum/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Análise por Conglomerados , Epitopos de Linfócito T/química , Perfilação da Expressão Gênica , Geografia , Gliadina/química , Gliadina/genética , Gliadina/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Alinhamento de Sequência , Triticum/genética
2.
BMC Genomics ; 10: 48, 2009 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-19171027

RESUMO

BACKGROUND: Alpha-gliadins form a multigene protein family encoded by multiple alpha-gliadin (Gli-2) genes at three genomic loci, Gli-A2, Gli-B2 and Gli-D2, respectively located on the homoeologous wheat chromosomes 6AS, 6BS, and 6DS. These proteins contain a number of important celiac disease (CD)-immunogenic domains. The alpha-gliadins expressed from the Gli-B2 locus harbour fewer conserved CD-epitopes than those from Gli-A2, whereas the Gli-D2 gliadins have the highest CD-immunogenic potential. In order to detect differences in the highly CD-immunogenic alpha-gliadin fraction we determined the relative expression level from the homoeologous Gli-2 loci in various tetraploid and hexaploid wheat genotypes by using a quantitative pyrosequencing method and by analyzing expressed sequence tag (EST) sequences. RESULTS: We detected large differences in relative expression levels of alpha-gliadin genes from the three homoeologous loci among wheat genotypes, both as relative numbers of expressed sequence tag (EST) sequences from specific varieties and when using a quantitative pyrosequencing assay specific for Gli-A2 genes. The relative Gli-A2 expression level in a tetraploid durum wheat cultivar ('Probstdorfer Pandur') was 41%. In genotypes derived from landraces, the Gli-A2 frequency varied between 12% and 58%. In some advanced hexaploid bread wheat cultivars the genes from locus Gli-B2 were hardly expressed (e.g., less than 5% in 'Lavett') but in others they made up more than 40% (e.g., in 'Baldus'). CONCLUSION: Here, we have shown that large differences exist in relative expression levels of alpha-gliadins from the homoeologous Gli-2 loci among wheat genotypes. Since the homoelogous genes differ in the amount of conserved CD-epitopes, screening for differential expression from the homoeologous Gli-2 loci can be employed for the pre-selection of wheat varieties in the search for varieties with very low CD-immunogenic potential. Pyrosequencing is a method that can be employed for such a 'gene family-specific quantitative transcriptome profiling'.


Assuntos
Gliadina/genética , Triticum/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Epitopos/genética , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Frequência do Gene , Genes de Plantas , Genótipo , Gliadina/imunologia , Dados de Sequência Molecular , Poliploidia , RNA de Plantas/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA