Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 11: 1430, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733475

RESUMO

The innate immune response to cytosolic DNA involves transcriptional activation of type I interferons (IFN-I) and proinflammatory cytokines. This represents the culmination of intracellular signaling pathways that are initiated by pattern recognition receptors that engage DNA and require the adaptor protein Stimulator of Interferon Genes (STING). These responses lead to the generation of cellular and tissue states that impair microbial replication and facilitate the establishment of long-lived, antigen-specific adaptive immunity. Ultimately this can lead to immune-mediated protection from infection but also to the cytotoxic T cell-mediated clearance of tumor cells. Intriguingly, pharmacologic activation of STING-dependent phenotypes is known to enhance both vaccine-associated immunogenicity and immune-based anti-tumor therapies. Unfortunately, the STING protein exists as multiple variant forms in the human population that exhibit differences in their reactivity to chemical stimuli and in the intensity of molecular signaling they induce. In light of this, STING-targeting drug discovery efforts require an accounting of protein variant-specific activity. Herein we describe a small molecule termed M04 that behaves as a novel agonist of human STING. Importantly, we find that the molecule exhibits a differential ability to activate STING based on the allelic variant examined. Furthermore, while M04 is inactive in mice, expression of human STING in mouse cells rescues reactivity to the compound. Using primary human cells in ex vivo assays we were also able to show that M04 is capable of simulating innate responses important for adaptive immune activation such as cytokine secretion, dendritic cell maturation, and T cell cross-priming. Collectively, this work demonstrates the conceivable utility of a novel agonist of human STING both as a research tool for exploring STING biology and as an immune potentiating molecule.


Assuntos
Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Proteínas de Membrana/agonistas , Alelos , Animais , Descoberta de Drogas , Humanos , Imunidade Inata/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos
2.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29263267

RESUMO

The type I interferon (IFN) system represents an essential innate immune response that renders cells resistant to virus growth via the molecular actions of IFN-induced effector proteins. IFN-mediated cellular states inhibit growth of numerous and diverse virus types, including those of known pathogenicity as well as potentially emerging agents. As such, targeted pharmacologic activation of the IFN response may represent a novel therapeutic strategy to prevent infection or spread of clinically impactful viruses. In light of this, we employed a high-throughput screen to identify small molecules capable of permeating the cell and of activating IFN-dependent signaling processes. Here we report the identification and characterization of N-(methylcarbamoyl)-2-{[5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}-2-phenylacetamide (referred to as C11), a novel compound capable of inducing IFN secretion from human cells. Using reverse genetics-based loss-of-function assays, we show that C11 activates the type I IFN response in a manner that requires the adaptor protein STING but not the alternative adaptors MAVS and TRIF. Importantly, treatment of cells with C11 generated a cellular state that potently blocked replication of multiple emerging alphavirus types, including chikungunya, Ross River, Venezuelan equine encephalitis, Mayaro, and O'nyong-nyong viruses. The antiviral effects of C11 were subsequently abrogated in cells lacking STING or the type I IFN receptor, indicating that they are mediated, at least predominantly, by way of STING-mediated IFN secretion and subsequent autocrine/paracrine signaling. This work also allowed characterization of differential antiviral roles of innate immune signaling adaptors and IFN-mediated responses and identified MAVS as being crucial to cellular resistance to alphavirus infection.IMPORTANCE Due to the increase in emerging arthropod-borne viruses, such as chikungunya virus, that lack FDA-approved therapeutics and vaccines, it is important to better understand the signaling pathways that lead to clearance of virus. Here we show that C11 treatment makes human cells refractory to replication of a number of these viruses, which supports its value in increasing our understanding of the immune response and viral pathogenesis required to establish host infection. We also show that C11 depends on signaling through STING to produce antiviral type I interferon, which further supports its potential as a therapeutic drug or research tool.


Assuntos
Alphavirus/metabolismo , Antivirais/farmacologia , Fibroblastos/metabolismo , Proteínas de Membrana/agonistas , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Comunicação Autócrina/efeitos dos fármacos , Comunicação Autócrina/genética , Fibroblastos/patologia , Fibroblastos/virologia , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Comunicação Parácrina/genética , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/genética
3.
mBio ; 8(3)2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465426

RESUMO

The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy's potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity.IMPORTANCE The type I interferon system is part of the innate immune response that has evolved in vertebrates as a first line of broad-spectrum immunological defense against an unknowable diversity of microbial, especially viral, pathogens. Here, we characterize a novel small molecule that artificially activates this response and in so doing generates a cellular state antagonistic to growth of currently emerging viruses: Zika virus, Chikungunya virus, and dengue virus. We also show that this molecule is capable of eliciting cellular responses that are predictive of establishment of adaptive immunity. As such, this agent may represent a powerful and multipronged therapeutic tool to combat emerging and other viral diseases.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/agonistas , Antivirais/farmacologia , Benzopiranos/farmacologia , Vírus Chikungunya/fisiologia , Vírus da Dengue/fisiologia , Tiadiazóis/farmacologia , Replicação Viral , Zika virus/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antivirais/química , Antivirais/isolamento & purificação , Benzopiranos/química , Benzopiranos/isolamento & purificação , Linhagem Celular , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Citocinas/biossíntese , Replicação do DNA/efeitos dos fármacos , Dengue/tratamento farmacológico , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/metabolismo , Descoberta de Drogas , Edição de Genes , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata/efeitos dos fármacos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/efeitos dos fármacos , Interferon Tipo I/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Tiadiazóis/química , Tiadiazóis/isolamento & purificação , Zika virus/efeitos dos fármacos
4.
PLoS Pathog ; 11(12): e1005324, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26646986

RESUMO

Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN) response by way of the transcription factor IFN regulatory factor 3 (IRF3). A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl)-N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10), which was found to trigger IRF3/IFN-associated transcription in human fibroblasts. Further examination of the cellular response to this molecule revealed expression of multiple IRF3-dependent antiviral effector genes as well as type I and III IFN subtypes. This led to the establishment of a cellular state that prevented replication of emerging Alphavirus species including Chikungunya virus, Venezuelan Equine Encephalitis virus, and Sindbis virus. To define cellular proteins essential to elicitation of the antiviral activity by the compound we employed a reverse genetics approach that utilized genome editing via CRISPR/Cas9 technology. This allowed the identification of IRF3, the IRF3-activating adaptor molecule STING, and the IFN-associated transcription factor STAT1 as required for observed gene induction and antiviral effects. Biochemical analysis indicates that G10 does not bind to STING directly, however. Thus the compound may represent the first synthetic small molecule characterized as an indirect activator of human STING-dependent phenotypes. In vivo stimulation of STING-dependent activity by an unrelated small molecule in a mouse model of Chikungunya virus infection blocked viremia demonstrating that pharmacologic activation of this signaling pathway may represent a feasible strategy for combating emerging Alphaviruses.


Assuntos
Antivirais/farmacologia , Febre de Chikungunya/imunologia , Proteínas de Membrana/agonistas , Transdução de Sinais/imunologia , Tiazinas/farmacologia , Alphavirus/imunologia , Infecções por Alphavirus/imunologia , Animais , Células Cultivadas , Vírus Chikungunya/imunologia , Ensaios de Triagem em Larga Escala , Humanos , Immunoblotting , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA