Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 1064010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36519135

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that can cause critical cellular damage and subvert the immune response to promote its survival. Among the numerous virulence factors of P. aeruginosa, the type III secretion system (T3SS) is involved in host cell pathogenicity. Using a needle-like structure, T3SS detects eukaryotic cells and injects toxins directly into their cytosol, thus highlighting its ability to interfere with the host immune response. In this mini-review, we discuss how the T3SS and bacterial effectors secreted by this pathway not only activate the immune response but can also manipulate it to promote the establishment of P. aeruginosa infections.


Assuntos
Infecções por Pseudomonas , Sistemas de Secreção Tipo III , Humanos , Sistemas de Secreção Tipo III/metabolismo , Pseudomonas aeruginosa , Proteínas de Bactérias/metabolismo , Fatores de Virulência/metabolismo , Imunidade , Infecções por Pseudomonas/microbiologia
2.
Front Immunol ; 13: 931027, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860265

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa is one of the most common agents of respiratory infections and has been associated with high morbidity and mortality rates. The ability of P. aeruginosa to cause severe respiratory infections results from the coordinated action of a variety of virulence factors that promote bacterial persistence in the lungs. Several of these P. aeruginosa virulence mechanisms are mediated by bacterial lipids, mainly lipopolysaccharide, rhamnolipid, and outer membrane vesicles. Other mechanisms arise from the activity of P. aeruginosa enzymes, particularly ExoU, phospholipase C, and lipoxygenase A, which modulate host lipid signaling pathways. Moreover, host phospholipases, such as cPLA2α and sPLA2, are also activated during the infectious process and play important roles in P. aeruginosa pathogenesis. These mechanisms affect key points of the P. aeruginosa-host interaction, such as: i) biofilm formation that contributes to bacterial colonization and survival, ii) invasion of tissue barriers that allows bacterial dissemination, iii) modulation of inflammatory responses, and iv) escape from host defenses. In this mini-review, we present the lipid-based mechanism that interferes with the establishment of P. aeruginosa in the lungs and discuss how bacterial and host lipids can impact the outcome of P. aeruginosa respiratory infections.


Assuntos
Infecções por Pseudomonas , Infecções Respiratórias , Humanos , Lipídeos , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Infecções Respiratórias/complicações , Fatores de Virulência
3.
Braz J Microbiol ; 53(2): 583-594, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35169995

RESUMO

Corynebacterium diphtheriae, the leading causing agent of diphtheria, has been increasingly related to invasive diseases, including sepsis, endocarditis, pneumonia, and osteomyelitis. Oxidative stress defense is required not only for successful growth and survival under environmental conditions but also in the regulation of virulence mechanisms of human pathogenic species, by promoting mucosal colonization, survival, dissemination, and defense against the innate immune system. OxyR, functioning as a negative and/or positive transcriptional regulator, has been included among the major bacterial coordinators of antioxidant response. OxyR was first reported as a repressor of catalase expression in C. diphtheriae. However, the involvement of OxyR in C. diphtheriae pathogenesis remains unclear. Accordingly, this work aimed to investigate the role of OxyR in mechanisms of host-pathogen interaction of C. diphtheriae through the disruption of the OxyR of the diphtheria toxin (DT)-producing C. diphtheriae CDC-E8392 strain. The effects of OxyR gene disruption were analyzed through interaction assays with human epithelial cell lines (HEp-2 and pneumocytes A549) and by the induction of experimental infections in Caenorhabditis elegans nematodes and Swiss Webster mice. The OxyR disruption exerted influence on NO production and mechanism accountable for the expression of the aggregative-adherence pattern (AA) expressed by CDC-E8392 strain on human epithelial HEp-2 cells. Moreover, invasive potential and intracytoplasmic survival within HEp-2 cells, as well as the arthritogenic potential in mice, were found affected by the OxyR disruption. In conclusion, data suggest that OxyR is implicated in mechanisms of host-pathogen interaction of C. diphtheriae.


Assuntos
Corynebacterium diphtheriae , Difteria , Endocardite , Animais , Corynebacterium diphtheriae/genética , Difteria/microbiologia , Endocardite/microbiologia , Interações Hospedeiro-Patógeno , Camundongos , Virulência
4.
Mem Inst Oswaldo Cruz ; 113(6): e140421, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29641644

RESUMO

BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , NADPH Oxidases/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Infecções Estreptocócicas/metabolismo , Streptococcus agalactiae/metabolismo , Análise de Variância , Aderência Bacteriana , Western Blotting , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos , NADPH Oxidases/análise , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/análise , Reação em Cadeia da Polimerase em Tempo Real , Valores de Referência , Transdução de Sinais/fisiologia , Fatores de Tempo
5.
Mem. Inst. Oswaldo Cruz ; 113(6): e140421, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-894933

RESUMO

BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.


Assuntos
Humanos , Espécies Reativas de Oxigênio/análise , NADPH Oxidases/análise , NADPH Oxidases/metabolismo , Células Endoteliais da Veia Umbilical Humana/microbiologia , Transdução de Sinais/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
6.
Front Immunol ; 8: 1127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959260

RESUMO

Leishmania parasites infect macrophages, causing a wide spectrum of human diseases, from cutaneous to visceral forms. In search of novel therapeutic targets, we performed comprehensive in vitro and ex vivo mapping of the signaling pathways upstream and downstream of antioxidant transcription factor [nuclear factor erythroid 2-related factor 2 (Nrf2)] in cutaneous leishmaniasis (CL), by combining functional assays in human and murine macrophages with a systems biology analysis of in situ (skin biopsies) CL patient samples. First, we show the PKR pathway controls the expression and activation of Nrf2 in Leishmania amazonensis infection in vitro. Nrf2 activation also required PI3K/Akt signaling and autophagy mechanisms. Nrf2- or PKR/Akt-deficient macrophages exhibited increased levels of ROS/RNS and reduced expression of Sod1 Nrf2-dependent gene and reduced parasite load. L. amazonensis counteracted the Nrf2 inhibitor Keap1 through the upregulation of p62 via PKR. This Nrf2/Keap1 observation was confirmed in situ in skin biopsies from Leishmania-infected patients. Next, we explored the ex vivo transcriptome in CL patients, as compared to healthy controls. We found the antioxidant response element/Nrf2 signaling pathway was significantly upregulated in CL, including downstream target p62. In silico enrichment analysis confirmed upstream signaling by interferon and PI3K/Akt, and validated our in vitro findings. Our integrated in vitro, ex vivo, and in silico approach establish Nrf2 as a central player in human cutaneous leishmaniasis and reveal Nrf2/PKR crosstalk and PI3K/Akt pathways as potential therapeutic targets.

7.
Sci Rep ; 5: 16777, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26608746

RESUMO

HIV-1 co-infection with human parasitic diseases is a growing public health problem worldwide. Leishmania parasites infect and replicate inside macrophages, thereby subverting host signaling pathways, including the response mediated by PKR. The HIV-1 Tat protein interacts with PKR and plays a pivotal role in HIV-1 replication. This study shows that Tat increases both the expression and activation of PKR in Leishmania-infected macrophages. Importantly, the positive effect of Tat addition on parasite growth was dependent on PKR signaling, as demonstrated in PKR-deficient macrophages or macrophages treated with the PKR inhibitor. The effect of HIV-1 Tat on parasite growth was prevented when the supernatant of HIV-1-infected macrophages was treated with neutralizing anti-HIV-1 Tat prior to Leishmania infection. The addition of HIV-1 Tat to Leishmania-infected macrophages led to inhibition of iNOS expression, modulation of NF-kB activation and enhancement of IL-10 expression. Accordingly, the expression of a Tat construct containing mutations in the basic region (49-57aa), which is responsible for the interaction with PKR, favored neither parasite growth nor IL-10 expression in infected macrophages. In summary, we show that Tat enhances Leishmania growth through PKR signaling.


Assuntos
HIV-1/metabolismo , Leishmania/crescimento & desenvolvimento , RNA de Cadeia Dupla/metabolismo , eIF-2 Quinase/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Ativação Enzimática , Humanos , Interleucina-10/metabolismo , Espaço Intracelular/parasitologia , Leishmania/metabolismo , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Leishmaniose/patologia , Macrófagos/enzimologia , Macrófagos/parasitologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química
8.
Open Biol ; 5(9): 150118, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26400473

RESUMO

Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both p50/p50 NF-κB induction and iNOS downregulation in infected macrophages depended on PI3K/Akt activation. Importantly, the intracellular growth of the parasite was also impaired during PI3K/Akt signalling inhibition and in macrophages knocked-down for Akt 1 expression. It was also observed that the increased nuclear levels of p50/p50 in L. amazonensis-infected macrophages were associated with reduced phosphorylation of 907 Ser p105, the precursor of p50. Corroborating these data, we demonstrated the increased levels of phospho-9 Ser GSK3ß in infected macrophages, which is associated with GSK3ß inhibition and, consequently, its inability to phosphorylate p105. Remarkably, we found that the levels of pPTEN 370 Ser, a negative regulator of PI3K, increased due to L. amazonensis infection. Our data support the notion that PI3K/Akt activity is sustained during the parasite infection, leading to NF-κB 105 phosphorylation and further processing to originate p50/p50 homodimers and the consequent downregulation of iNOS expression.


Assuntos
Leishmania/fisiologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Dimerização , Regulação para Baixo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Leishmania/genética , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Leishmaniose/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/química , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
9.
Pathog Dis ; 73(7)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187894

RESUMO

Intravital microscopy was used to assess the involvement of ExoU, a Pseudomonas aeruginosa cytotoxin with phospholipase A2 activity, in dysfunction of cerebral microcirculation during experimental pneumosepsis. Cortical vessels from mice intratracheally infected with low density of the ExoU-producing PA103 P. aeruginosa strain exhibited increased leukocyte rolling and adhesion to venule endothelium, decreased capillar density and impaired arteriolar response to vasoactive acetylcholine. These phenomena were mediated by the platelet activating factor receptor (PAFR) pathway because they were reversed in mice treated with a PAFR antagonist prior to infection. Brains from PA103-infected animals exhibited a perivascular inflammatory infiltration that was not detected in animals infected with an exoU deficient mutant or in mice treated with the PAFR antagonist and infected with the wild type bacteria. No effect on brain capillary density was detected in mice infected with the PAO1 P. aeruginosa strain, which do not produce ExoU. Finally, after PA103 infection, mice with a targeted deletion of the PAFR gene exhibited higher brain capillary density and lower leukocyte adhesion to venule endothelium, as well as lower increase of systemic inflammatory cytokines, when compared to wild-type mice. Altogether, our results establish a role for PAFR in mediating ExoU-induced cerebral microvascular failure in a murine model of sepsis.


Assuntos
Proteínas de Bactérias/metabolismo , Encéfalo/patologia , Microcirculação/fisiologia , Fator de Ativação de Plaquetas/metabolismo , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/metabolismo , Sepse/patologia , Animais , Adesão Celular , Citocinas/análise , Feminino , Microscopia Intravital , Leucócitos/imunologia , Camundongos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Pseudomonas aeruginosa/crescimento & desenvolvimento , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
10.
Med Microbiol Immunol ; 204(6): 673-80, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25904542

RESUMO

ExoU is a potent proinflammatory toxin produced by Pseudomonas aeruginosa, a major agent of severe lung infection and sepsis. Because inflammation is usually associated with oxidative stress, we investigated the effect of ExoU on free radical production and antioxidant defense mechanisms during the course of P. aeruginosa infection. In an experimental model of acute pneumonia, ExoU accounted for increased lipid peroxidation in mice lungs as soon as 3 h after intratracheal instillation of PA103 P. aeruginosa strain. The contribution of airway cells to the generation of a redox imbalance was assessed by in vitro tests carried out with A549 airway epithelial cells. Cultures infected with the ExoU-producing PA103 P. aeruginosa strain produced significantly increased concentrations of lipid hydroperoxides, 8-isoprostane, reactive oxygen intermediates, peroxynitrite and nitric oxide (NO), when compared to cells infected with exoU-deficient mutants. Overproduction of NO by PA103-infected cells likely resulted from overexpression of both inducible and endothelial NO synthase isoforms. PA103 infection was also associated with a significantly increased activity of superoxide dismutase (SOD) and decreased levels of reduced glutathione (GSH), a major antioxidant compound. Our findings unveil another potential mechanism of tissue damage during infection by ExoU-producing P. aeruginosa strains.


Assuntos
Proteínas de Bactérias/metabolismo , Oxirredução , Estresse Oxidativo , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Pseudomonas aeruginosa/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Sepse , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Feminino , Peroxidação de Lipídeos , Camundongos , Superóxido Dismutase/metabolismo
11.
Cell Microbiol ; 16(8): 1244-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24612488

RESUMO

ExoU is an important virulence factor in acute Pseudomonas aeruginosa infections. Here, we unveiled the mechanisms of ExoU-driven NF-κB activation by using human airway cells and mice infected with P. aeruginosa strains. Several approaches showed that PAFR was crucially implicated in the activation of the canonical NF-κB pathway. Confocal microscopy of lungs from infected mice revealed that PAFR-dependent NF-κB activation occurred mainly in respiratory epithelial cells, and reduced p65 nuclear translocation was detected in mice PAFR-/- or treated with the PAFR antagonist WEB 2086. Several evidences showed that ExoU-induced NF-κB activation regulated PAFR expression. First, ExoU increased p65 occupation of PAFR promoter, as assessed by ChIP. Second, luciferase assays in cultures transfected with different plasmid constructs revealed that ExoU promoted p65 binding to the three κB sites in PAFR promoter. Third, treatment of cell cultures with the NF-κB inhibitor Bay 11-7082, or transfection with IκBα negative-dominant, significantly decreased PAFR mRNA. Finally, reduction in PAFR expression was observed in mice treated with Bay 11-7082 or WEB 2086 prior to infection. Together, our data demonstrate that ExoU activates NF-κB by PAFR signalling, which in turns enhances PAFR expression, highlighting an important mechanism of amplification of response to this P. aeruginosa toxin.


Assuntos
Proteínas de Bactérias/metabolismo , Fator de Ativação de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/genética , Pseudomonas aeruginosa/patogenicidade , Receptores Acoplados a Proteínas G/genética , Fator de Transcrição RelA/metabolismo , Animais , Azepinas/farmacologia , Toxinas Bacterianas/metabolismo , Linhagem Celular , Ativação Enzimática , Feminino , Regulação da Expressão Gênica , Humanos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fator de Ativação de Plaquetas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Glicoproteínas da Membrana de Plaquetas/biossíntese , Regiões Promotoras Genéticas , Ligação Proteica , Infecções por Pseudomonas/patologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/biossíntese , Transdução de Sinais/genética , Triazóis/farmacologia
12.
Mem Inst Oswaldo Cruz ; 107(6): 728-34, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22990960

RESUMO

An increased plasma concentration of von Willebrand factor (vWF) is detected in individuals with many infectious diseases and is accepted as a marker of endothelium activation and prothrombotic condition. To determine whether ExoU, a Pseudomonas aeruginosa cytotoxin with proinflammatory activity, enhances the release of vWF, microvascular endothelial cells were infected with the ExoU-producing PA103 P. aeruginosa strain or an exoU-deficient mutant. Significantly increased vWF concentrations were detected in conditioned medium and subendothelial extracellular matrix from cultures infected with the wild-type bacteria, as determined by enzyme-linked immunoassays. PA103-infected cells also released higher concentrations of procoagulant microparticles containing increased amounts of membrane-associated vWF, as determined by flow cytometric analyses of cell culture supernatants. Both flow cytometry and confocal microscopy showed that increased amounts of vWF were associated with cytoplasmic membranes from cells infected with the ExoU-producing bacteria. PA103-infected cultures exposed to platelet suspensions exhibited increased percentages of cells with platelet adhesion. Because no modulation of the vWF mRNA levels was detected by reverse transcription-polymerase chain reaction assays in PA103-infected cells, ExoU is likely to have induced the release of vWF from cytoplasmic stores rather than vWF gene transcription. Such release is likely to modify the thromboresistance of microvascular endothelial cells.


Assuntos
Proteínas de Bactérias/metabolismo , Células Endoteliais/microbiologia , Endotélio Vascular/microbiologia , Pseudomonas aeruginosa/metabolismo , Fator de von Willebrand/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Humanos , Adesividade Plaquetária
13.
Mem. Inst. Oswaldo Cruz ; 107(6): 728-734, set. 2012. ilus
Artigo em Inglês | LILACS | ID: lil-649486

RESUMO

An increased plasma concentration of von Willebrand factor (vWF) is detected in individuals with many infectious diseases and is accepted as a marker of endothelium activation and prothrombotic condition. To determine whether ExoU, a Pseudomonas aeruginosa cytotoxin with proinflammatory activity, enhances the release of vWF, microvascular endothelial cells were infected with the ExoU-producing PA103 P. aeruginosa strain or an exoU-deficient mutant. Significantly increased vWF concentrations were detected in conditioned medium and subendothelial extracellular matrix from cultures infected with the wild-type bacteria, as determined by enzyme-linked immunoassays. PA103-infected cells also released higher concentrations of procoagulant microparticles containing increased amounts of membrane-associated vWF, as determined by flow cytometric analyses of cell culture supernatants. Both flow cytometry and confocal microscopy showed that increased amounts of vWF were associated with cytoplasmic membranes from cells infected with the ExoU-producing bacteria. PA103-infected cultures exposed to platelet suspensions exhibited increased percentages of cells with platelet adhesion. Because no modulation of the vWF mRNA levels was detected by reverse transcription-polymerase chain reaction assays in PA103-infected cells, ExoU is likely to have induced the release of vWF from cytoplasmic stores rather than vWF gene transcription. Such release is likely to modify the thromboresistance of microvascular endothelial cells.


Assuntos
Humanos , Proteínas de Bactérias/metabolismo , Células Endoteliais/microbiologia , Endotélio Vascular/microbiologia , Pseudomonas aeruginosa/metabolismo , Fator de von Willebrand/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Adesividade Plaquetária
14.
PLoS One ; 7(7): e41772, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848596

RESUMO

ExoU, a Pseudomonas aeruginosa cytotoxin injected into host cytosol by type III secretion system, exhibits a potent proinflammatory activity that leads to a marked recruitment of neutrophils to infected tissues. To evaluate the mechanisms that account for neutrophil infiltration, we investigated the effect of ExoU on IL-8 secretion and NF-κB activation. We demonstrate that ExoU increases IL-8 mRNA and protein levels in P. aeruginosa-infected epithelial and endothelial cell lines. Also, ExoU induces the nuclear translocation of p65/p50 NF-κB transactivator heterodimer as well as NF-κB-dependent transcriptional activity. ChIP assays clearly revealed that ExoU promotes p65 binding to NF-κB site in IL-8 promoter and the treatment of cultures with the NF-κB inhibitor Bay 11-7082 led to a significant reduction in IL-8 mRNA levels and protein secretion induced by ExoU. These results were corroborated in a murine model of pneumonia that revealed a significant reduction in KC secretion and neutrophil infiltration in bronchoalveolar lavage when mice were treated with Bay 11-7082 before infection with an ExoU-producing strain. In conclusion, our data demonstrate that ExoU activates NF-κB, stimulating IL-8 expression and secretion during P. aeruginosa infection, and unveils a new mechanism triggered by this important virulence factor to interfere in host signaling pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Pseudomonas aeruginosa/fisiologia , Animais , Proteínas de Bactérias/biossíntese , Líquido da Lavagem Broncoalveolar/microbiologia , Capilares/citologia , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Regulação da Expressão Gênica , Interleucina-8/genética , Camundongos , Infiltração de Neutrófilos , Pseudomonas aeruginosa/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia
15.
Microbes Infect ; 12(2): 154-61, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19931407

RESUMO

ExoU, a Pseudomonas aeruginosa cytotoxin injected via the type III secretion system into host cells, possesses eicosanoid-mediated proinflammatory properties due to its phospholipase A(2) (PLA(2)) activity. This report addressed the question whether ExoU may modulate the expression of adhesion molecules in host cells, therefore contributing to the recruitment of leukocyte into infected tissues. ExoU was shown to down-regulate membrane-bound ICAM-1 (mICAM-1) and up-regulate the release of soluble ICAM-1 (sICAM-1) from P. aeruginosa-infected endothelial cells. The modulation of ICAM-1 depended on the direct effect of the ExoU PLA(2) activity and involved the cyclooxygenase (COX) pathway. No differences in mICAM-1 and sICAM-1 mRNA levels were observed when cultures were infected with the ExoU-producing PA103 strain or the mutant PA103DeltaexoU, suggesting that ExoU may proteolytically cleave mICAM-1, producing sICAM-1 in a COX-dependent pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Células Endoteliais/microbiologia , Endotélio Vascular/microbiologia , Molécula 1 de Adesão Intercelular/metabolismo , Leucocidinas/metabolismo , Pseudomonas aeruginosa/patogenicidade , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Molécula 1 de Adesão Intercelular/genética , Lipoxigenase/metabolismo , Pseudomonas aeruginosa/metabolismo
16.
Braz. j. microbiol ; 34(supl.1): 25-26, Nov. 2003.
Artigo em Inglês | LILACS | ID: lil-389975

RESUMO

Para determinar o papel de ExoU na citotoxicidade tardia de P. aeruginosa, células endoteliais (CE) foram expostas às cepas PA103, PA103DxoU e PA103::exsA por 1h e à gentamicina em meio de cultura. Após 24h, a viabilidade das CE infectadas com PA103 (33.7 ± 14.3%) foi inferior à de CE infectadas com PA103DexoU (77.7 ± 6.3%) e PA103::exsA (79.5 ± 23.3%). A citotoxicidade não dependeu da capacidade de interagir com as CE porque o percentual de células com bactérias associadas em culturas expostas a PA103 foi semelhante ao percentual em culturas expostas a PA103DexoU e inferior em culturas expostas a PA103::exsA. O tratamento das CE com citocalasina D reduziu a internalização de PA103, mas não interferiu em sua citotoxicidade.

17.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469470

RESUMO

To ascertain the role of ExoU in late P. aeruginosa cytotoxicity, endothelial cells (EC) were exposed to wild type PA103, PA103deltaexoU and PA103::exsA for 1h and to gentamicin in culture medium. After 24h, the viability of PA103-infected cells (33.7 ± 14.3%) was significantly lower than the viability of PA103deltaexoU- (77.7 ± 6.3%) or PA103::exsA- (79.5 ± 23.3%) infected EC. P. aeruginosa cytotoxicity did not depend on the bacterial ability to interact with EC because the percentage of cells with associated PA103 (35.9 ± 15.8%) was similar to the percentage in PA103deltaexoU- (34.2 ± 16.0%) and lower than the percentage in PA103::exsA-infected cultures (82.9 ± 18.9%). Cell treatment with cytochalasin D reduced the PA103 internalization by EC but did not interfere with its ability to kill host cells.


Para determinar o papel de ExoU na citotoxicidade tardia de P. aeruginosa, células endoteliais (CE) foram expostas às cepas PA103, PA103deltaxoU e PA103::exsA por 1h e à gentamicina em meio de cultura. Após 24h, a viabilidade das CE infectadas com PA103 (33.7 ± 14.3%) foi inferior à de CE infectadas com PA103deltaexoU (77.7 ± 6.3%) e PA103::exsA (79.5 ± 23.3%). A citotoxicidade não dependeu da capacidade de interagir com as CE porque o percentual de células com bactérias associadas em culturas expostas a PA103 foi semelhante ao percentual em culturas expostas a PA103deltaexoU e inferior em culturas expostas a PA103::exsA. O tratamento das CE com citocalasina D reduziu a internalização de PA103, mas não interferiu em sua citotoxicidade.

18.
Microb Pathog ; 33(4): 153-66, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12385743

RESUMO

Pseudomonas aeruginosa, a common agent of septicemia, enters into human endothelial cellsin vitro but the effects of bacterial infection have not been addressed properly. In this study, human umbilical vein endothelial cells (HUVEC) were infected by the noninvasive PA103 and the invasive PAO1 P. aeruginosa strains and the viability of infected cells was assessed by the methyltiazole tetrazolium (MTT) assay. Both strains were cytotoxic within 3h of infection. To ascertain the role of proteins secreted by the type III secretion system (TTSS) in HUVEC killing, defective mutants of PAO1 and PA103 were constructed by plasmid insertion in exsA or pscC genes. ExsA is a transcriptional regulator that controls the expression of most TTSS related genes whereas pscC encodes a protein from the secretion machinery. Parental bacteria were significantly more cytotoxic to HUVEC than the mutants. Inactivation ofexsA reverted the inability of PA103 to enter into HUVEC but did not modify the invasiveness of PAO1. Cytofluorometric analysis of infected HUVEC labeled by DiOC(6)(3) showed that cell killing was associated with mitochondrial depolarization, an early event reported in apoptosis. However, infected cells did not show ultrastructural or DNA fragmentation features of apoptosis. Our results suggest that TTSS effectors mediate P. aeruginosa killing of HUVEC by a mechanism distinct from apoptosis.


Assuntos
Proteínas de Bactérias/toxicidade , Endotélio Vascular/patologia , Pseudomonas aeruginosa/patogenicidade , Apoptose , Células Cultivadas , Endotélio Vascular/ultraestrutura , Gentamicinas/farmacologia , Humanos , Potenciais da Membrana , Mitocôndrias/fisiologia , Vasculite/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA