Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7119, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531918

RESUMO

The coffee leaf miner (Leucoptera coffeella) is one of the major pests of coffee crops in the neotropical regions, and causes major economic losses. Few molecular data are available to identify this pest and advances in the knowledge of the genome of L. coffeella will contribute to improving pest identification and also clarify taxonomy of this microlepidoptera. L. coffeella DNA was extracted and sequenced using PacBio HiFi technology. Here we report the complete L. coffeella circular mitochondrial genome (16,407 bp) assembled using Aladin software. We found a total of 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and an A + T rich-region and a D-loop. The L. coffeella mitochondrial gene organization is highly conserved with similarities to lepidopteran mitochondrial gene rearrangements (trnM-trnI-trnQ). We concatenated the 13 PCG to construct a phylogenetic tree and inferred the relationship between L. coffeella and other lepidopteran species. L. coffeella is found in the Lyonetiidae clade together with L. malifoliella and Lyonetia clerkella, both leaf miners. Interestingly, this clade is assigned in the Yponomeutoidea superfamily together with Gracillariidae, and both superfamilies displayed species with leaf-mining feeding habits.


Assuntos
Genoma Mitocondrial , Lepidópteros , Mariposas , Animais , Lepidópteros/genética , Filogenia , Mariposas/genética , Sequência de Bases , Genes Mitocondriais , RNA de Transferência/genética
2.
Exp Parasitol ; 238: 108246, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460697

RESUMO

Meloidogyne incognita is the most economically important species of the root-knot nematode complex causing damage to several crops worldwide. During parasitism in host plants, M. incognita secretes several effector proteins to suppress the plant immune system, manipulate the plant cell cycle, and promote parasitism. Several effector proteins have been identified, but their relationship with plant parasitism by M. incognita has not been fully confirmed. Herein, the Minc01696, Minc00344, and Minc00801 putative effector genes were evaluated to assess their importance during soybean and Nicotiana tabacum parasitism by M. incognita. For this study, we used in planta RNAi technology to overexpress dsRNA molecules capable of producing siRNAs that target and downregulate these nematode effector genes. Soybean composite roots and N. tabacum lines were successfully generated, and susceptibility level to M. incognita was evaluated. Consistently, both transgenic soybean roots and transgenic N. tabacum lines carrying the RNAi strategy showed reduced susceptibility to M. incognita. The number of galls per plant and the number of egg masses per plant were reduced by up to 85% in transgenic soybean roots, supported by the downregulation of effector genes in M. incognita during parasitism. Similarly, the number of galls per plant, the number of egg masses per plant, and the nematode reproduction factor were reduced by up to 83% in transgenic N. tabacum lines, which was also supported by the downregulation of the Minc00801 effector gene during parasitism. Therefore, our data indicate that all three effector genes can be a target in the development of new biotechnological tools based on the RNAi strategy in economically important crops for M. incognita control.


Assuntos
Doenças das Plantas , Tylenchoidea , Animais , Doenças das Plantas/prevenção & controle , Raízes de Plantas , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Glycine max/genética , Nicotiana/genética , Tylenchoidea/genética
3.
Exp Parasitol ; 229: 108153, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34508716

RESUMO

Several economically important crops are susceptible to root-knot nematode (RKNs). Meloidogyne incognita and M. javanica are the two most reported species from the RKN complex, causing damage to several crops worldwide. The successful outcome of the Meloidogyne-plant interaction is associated with molecular factors secreted by the nematode to suppress the plant's immune response and promote nematode parasitism. In contrast, several plant factors are associated with defense against nematode infection. In this study, we identified and characterized the specific interaction of Minc00344 and Mj-NULG1a effectors with soybean GmHub10 (Glyma.19G008200) protein in vitro and in vivo. An Arabidopsis thaliana T-DNA mutant of AtHub10 (AT3G27960, an orthologous gene of GmHub10) showed higher susceptibility to M. incognita. Thus, since soybean and A. thaliana Hub10 proteins are involved in pollen tube growth and indirect activation of the defense response, our data suggest that effector-Hub10 interactions could be associated with an increase in plant susceptibility. These findings indicate the potential of these effector proteins to develop new biotechnological tools based on RNA interference and the overexpression of engineered Hub10 proteins for the efficient management of RKN in crops.


Assuntos
Glycine max/efeitos dos fármacos , Glycine max/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea/patogenicidade , Animais , Arabidopsis , Interações Hospedeiro-Parasita , Fenótipo , Filogenia , Domínios e Motivos de Interação entre Proteínas , Glycine max/classificação , Tylenchoidea/classificação , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA