Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 10(5): 1295-304, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19344123

RESUMO

A de novo designed three-stranded beta-sheet (TSS1) has been prepared that undergoes temperature-induced folding and self-assembly to afford a network of beta-sheet rich fibrils that constitutes a mechanically rigid hydrogel. Circular dichroism and infrared spectroscopies show that TSS1 folds and self-assembles into a beta-sheet secondary structure in response to temperature. Rheological measurements show that the resulting hydrogels are mechanically rigid [at pH 9, G' = 1750-9000 Pa, and at pH 7.4, G' = 8500 Pa] and that the storage modulus can be modulated by temperature and peptide concentration. Nanoscale structure analysis by transmission electron microscopy and small angle neutron scattering indicate that the hydrogel network is comprised of fibrils that are about 3 nm in width, consistent with the width of TSS1 in the folded state. A unique property of the TSS1 hydrogel is its ability to shear-thin into a low viscosity gel upon application of shear stress and immediately recover its mechanical rigidity upon termination of stress. This attribute allows the hydrogel to be delivered via syringe to a target site with spatial and temporal resolution. Finally, experiments employing C3H10t1/2 mesenchymal stem cells seeded onto the hydrogel and incubated for 24 h indicate that the TSS1 hydrogel surface is noncytotoxic, supports cell adhesion, and allows cell migration.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/síntese química , Animais , Sobrevivência Celular , Células Cultivadas , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Camundongos , Peptídeos/síntese química , Peptídeos/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Reologia , Propriedades de Superfície , Temperatura , Fatores de Tempo , Viscosidade
2.
Biomaterials ; 29(31): 4164-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18687464

RESUMO

The pro-inflammatory potential of beta-hairpin peptide hydrogels (MAX1 and MAX8) was assessed in vitro by measuring the cellular response of J774 mouse peritoneal macrophages cultured on the hydrogel surfaces. An enzyme-linked immunosorbent assay (ELISA) was used to measure the level of TNF-alpha, a pro-inflammatory cytokine, secreted by cells cultured on the gel surfaces. Both bulk and thin films of gels did not elicit TNF-alpha secretion from the macrophages. In addition, live/dead assays employing laser scanning confocal microscopy (LSCM) and phase-contrast light micrographs show the hydrogel surfaces are non-cytotoxic toward the macrophages and allow the cells to adopt healthy morphologies. When macrophages were activated with lipopolysaccharide (LPS), a known bacterial pathogen that activates an innate immune response, an increase in the TNF-alpha titers by two orders of magnitude was observed. On LPS induction, macrophages displayed a decrease in cell density, enlarged nuclei, and an increase in cytoplasmic granularity, all characteristics of activated macrophages indicating that the cells are still capable of reacting to insult. The data presented herein indicate that MAX1 and MAX8 gels do not elicit macrophage activation in vitro and suggest that these materials are excellent candidates for in vivo assessment in appropriate animal models.


Assuntos
Hidrogéis/química , Mediadores da Inflamação/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Mediadores da Inflamação/química , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Reologia , Fator de Necrose Tumoral alfa/metabolismo
3.
J Am Chem Soc ; 129(47): 14793-9, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17985907

RESUMO

Among several important considerations for implantation of a biomaterial, a main concern is the introduction of infection. We have designed a hydrogel scaffold from the self-assembling peptide, MAX1, for tissue regeneration applications whose surface exhibits inherent antibacterial activity. In experiments where MAX1 gels are challenged with bacterial solutions ranging in concentrations from 2 x 10(3) colony forming units (CFUs)/dm2 to 2 x 10(9) CFUs/dm2, gel surfaces exhibit broad-spectrum antibacterial activity. Results show that the hydrogel surface is active against Gram-positive (Staphylococcus epidermidis, Staphylococcus aureus, and Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae and Escherichia coli) bacteria, all prevalent in hospital settings. Live-dead assays employing laser scanning confocal microscopy show that bacteria are killed when they engage the surface. In addition, the surface of MAX1 hydrogels was shown to cause inner and outer membrane disruption in experiments that monitor the release of beta-galactosidase from the cytoplasm of lactose permease-deficient E. coli ML-35. These data suggest a mechanism of antibacterial action that involves membrane disruption that leads to cell death upon cellular contact with the gel surface. Although the hydrogel surface exhibits bactericidal activity, co-culture experiments indicate hydrogel surfaces show selective toxicity to bacterial versus mammalian cells. Additionally, gel surfaces are nonhemolytic toward human erythrocytes, which maintain healthy morphologies when in contact with the surface. These material attributes make MAX1 gels attractive candidates for use in tissue regeneration, even in nonsterile environments.


Assuntos
Antibacterianos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Células NIH 3T3 , Peptídeos/metabolismo , Peptídeos/farmacologia , Dobramento de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície
4.
J Am Chem Soc ; 127(48): 17025-9, 2005 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-16316249

RESUMO

Photopolymerization can be used to construct materials with precise temporal and spatial resolution. Applications such as tissue engineering, drug delivery, the fabrication of microfluidic devices and the preparation of high-density cell arrays employ hydrogel materials that are often prepared by this technique. Current photopolymerization strategies used to prepare hydrogels employ photoinitiators, many of which are cytotoxic and require large macromolecular precursors that need to be functionalized with moieties capable of undergoing radical cross-linking reactions. We have developed a simple light-activated hydrogelation system that employs a designed peptide whose ability to self-assemble into hydrogel material is dependent on its intramolecular folded conformational state. An iterative design strategy afforded MAX7CNB, a photocaged peptide that, when dissolved in aqueous medium, remains unfolded and unable to self-assemble; a 2 wt % solution of freely soluble unfolded peptide is stable to ambient light and has the viscosity of water. Irradiation of the solution (260 < lambda < 360 nm) releases the photocage and triggers peptide folding to produce amphiphilic beta-hairpins that self-assemble into viscoelastic hydrogel material. Circular dichroic (CD) spectroscopy supports this folding and self-assembly mechanism, and oscillatory rheology shows that the resulting hydrogel is mechanically rigid (G' = 1000 Pa). Laser scanning confocal microscopy imaging of NIH 3T3 fibroblasts seeded onto the gel indicates that the gel surface is noncytotoxic, conducive to cell adhesion, and allows cell migration. Lastly, thymidine incorporation assays show that cells seeded onto decaged hydrogel proliferate at a rate equivalent to cells seeded onto a tissue culture-treated polystyrene control surface.


Assuntos
Hidrogéis/química , Nanoestruturas/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Concentração Osmolar , Peptídeos/síntese química , Fotoquímica , Dobramento de Proteína , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA