Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
J Pers Med ; 7(2)2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28538708

RESUMO

The ability to measure physical activity through wrist-worn devices provides an opportunity for cardiovascular medicine. However, the accuracy of commercial devices is largely unknown. The aim of this work is to assess the accuracy of seven commercially available wrist-worn devices in estimating heart rate (HR) and energy expenditure (EE) and to propose a wearable sensor evaluation framework. We evaluated the Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, Mio Alpha 2, PulseOn, and Samsung Gear S2. Participants wore devices while being simultaneously assessed with continuous telemetry and indirect calorimetry while sitting, walking, running, and cycling. Sixty volunteers (29 male, 31 female, age 38 ± 11 years) of diverse age, height, weight, skin tone, and fitness level were selected. Error in HR and EE was computed for each subject/device/activity combination. Devices reported the lowest error for cycling and the highest for walking. Device error was higher for males, greater body mass index, darker skin tone, and walking. Six of the devices achieved a median error for HR below 5% during cycling. No device achieved an error in EE below 20 percent. The Apple Watch achieved the lowest overall error in both HR and EE, while the Samsung Gear S2 reported the highest. In conclusion, most wrist-worn devices adequately measure HR in laboratory-based activities, but poorly estimate EE, suggesting caution in the use of EE measurements as part of health improvement programs. We propose reference standards for the validation of consumer health devices (http://precision.stanford.edu/).

3.
JAMA ; 317(13): 1349-1357, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28306757

RESUMO

Importance: Formulating exercise recommendations for patients with hypertrophic cardiomyopathy is challenging because of concern about triggering ventricular arrhythmias and because a clinical benefit has not been previously established in this population. Objective: To determine whether moderate-intensity exercise training improves exercise capacity in adults with hypertrophic cardiomyopathy. Design, Setting, and Participants: A randomized clinical trial involving 136 patients with hypertrophic cardiomyopathy was conducted between April 2010 and October 2015 at 2 academic medical centers in the United States (University of Michigan Health System and Stanford University Medical Center). Date of last follow-up was November 2016. Interventions: Participants were randomly assigned to 16 weeks of moderate-intensity exercise training (n = 67) or usual activity (n = 69). Main Outcomes and Measures: The primary outcome measure was change in peak oxygen consumption from baseline to 16 weeks. Results: Among the 136 randomized participants (mean age, 50.4 [SD, 13.3] years; 42% women), 113 (83%) completed the study. At 16 weeks, the change in mean peak oxygen consumption was +1.35 (95% CI, 0.50 to 2.21) mL/kg/min among participants in the exercise training group and +0.08 (95% CI, -0.62 to 0.79) mL/kg/min among participants in the usual-activity group (between-group difference, 1.27 [95% CI, 0.17 to 2.37]; P = .02). There were no occurrences of sustained ventricular arrhythmia, sudden cardiac arrest, appropriate defibrillator shock, or death in either group. Conclusions and Relevance: In this preliminary study involving patients with hypertrophic cardiomyopathy, moderate-intensity exercise compared with usual activity resulted in a statistically significant but small increase in exercise capacity at 16 weeks. Further research is needed to understand the clinical importance of this finding in patients with hypertrophic cardiomyopathy, as well as the long-term safety of exercise at moderate and higher levels of intensity. Trial Registration: clinicaltrials.gov Identifier: NCT01127061.


Assuntos
Cardiomiopatia Hipertrófica/reabilitação , Terapia por Exercício/métodos , Consumo de Oxigênio , Adulto , Arritmias Cardíacas , Cardiomiopatia Hipertrófica/fisiopatologia , Morte Súbita Cardíaca , Feminino , Humanos , Pessoa de Meia-Idade , Resistência Física
4.
J Am Coll Cardiol ; 66(22): 2522-33, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26653627

RESUMO

BACKGROUND: The genetic determinants of heart failure (HF) and response to medical therapy remain unknown. We hypothesized that identifying genetic variants of HF that associate with response to medical therapy would elucidate the genetic basis of cardiac function. OBJECTIVES: This study sought to identify genetic variations associated with response to HF therapy. METHODS: This study compared extremes of response to medical therapy in 866 HF patients using a genome-wide approach that informed the systems-based design of a customized single nucleotide variant array. The effect of genotype on gene expression was measured using allele-specific luciferase reporter assays. Candidate gene transcription-deficient mice underwent echocardiography and treadmill exercise. The ability of the target gene agonist to rescue mice from chemically-induced HF was assessed with echocardiography. RESULTS: Of 866 HF patients, 136 had an ejection fraction improvement of 20% attributed to resynchronization (n = 83), revascularization (n = 7), tachycardia resolution (n = 2), alcohol cessation (n = 1), or medications (n = 43). Those with the minor allele for rs7767652, upstream of hypocretin (orexin) receptor-2 (HCRTR2), were less likely to have improved left ventricular function (odds ratio: 0.40 per minor allele; p = 3.29 × 10(-5)). In a replication cohort of 798 patients, those with a minor allele for rs7767652 had a lower prevalence of ejection fraction >35% (odds ratio: 0.769 per minor allele; p = 0.021). In an HF model, HCRTR2-deficient mice exhibited poorer cardiac function, worse treadmill exercise capacity, and greater myocardial scarring. Orexin, an HCRTR2 agonist, rescued function in this HF mouse model. CONCLUSIONS: A systems approach identified a novel genetic contribution to human HF and a promising therapeutic agent efficacious in an HF model.


Assuntos
Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Receptores de Orexina/genética , Volume Sistólico/genética , Adulto , Idoso , Animais , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
6.
J Cardiovasc Transl Res ; 2(4): 381-91, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20559996

RESUMO

Building on seminal studies of the last 20 years, genetic testing for hypertrophic cardiomyopathy (HCM) has become a clinical reality in the form of targeted exonic sequencing of known disease-causing genes. This has been driven primarily by the decreasing cost of sequencing, but the high profile of genome-wide association studies, the launch of direct-to-consumer genetic testing, and new legislative protection have also played important roles. In the clinical management of hypertrophic cardiomyopathy, genetic testing is primarily used for family screening. An increasing role is recognized, however, in diagnostic settings: in the differential diagnosis of HCM; in the differentiation of HCM from hypertensive or athlete's heart; and more rarely in preimplantation genetic diagnosis. Aside from diagnostic clarification and family screening, use of the genetic test for guiding therapy remains controversial, with data currently too limited to derive a reliable mutation risk prediction from within the phenotypic noise of different modifying genomes. Meanwhile, the power of genetic testing derives from the confidence with which a mutation can be called present or absent in a given individual. This confidence contrasts with our more limited ability to judge the significance of mutations for which co-segregation has not been demonstrated. These variants of "unknown" significance represent the greatest challenge to the wider adoption of genetic testing in HCM. Looking forward, next-generation sequencing technologies promise to revolutionize the current approach as whole genome sequencing will soon be available for the cost of today's targeted panel. In summary, our future will be characterized not by lack of genetic information but by our ability to effectively parse it.


Assuntos
Cardiomiopatia Hipertrófica Familiar/diagnóstico , Cardiomiopatia Hipertrófica/diagnóstico , Testes Genéticos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/terapia , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/terapia , Marcadores Genéticos , Predisposição Genética para Doença , Privacidade Genética , Testes Genéticos/economia , Humanos , Fenótipo , Valor Preditivo dos Testes , Diagnóstico Pré-Implantação , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA