Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(23): 28288-28299, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37276196

RESUMO

The low power consumption of electrochromism makes it widely used in actively shaded windows and mirrors, while flexible versions are attractive for use in wearable devices. Initial demonstration of stretchable electrochromic elements promises good conformability to complex surfaces. Here, fully integrated intrinsically stretchable electrochromic devices are demonstrated as single elements and 3 × 3 displays. Conductive and electrochromic ionic liquid-doped poly(3,4-ethylenedioxythiophene) polystyrene sulfonate is combined with poly(vinyl alcohol)-based electrolyte to form complete cells. A transmission change of 15% is demonstrated, along with a reflectance change of 25% for opaque reflective devices, with <7 s switching time, even under 30% strain. Stability under both electrochemical and mechanical strain cycling is demonstrated. A passive matrix display exhibits addressability and low cross-talk under strain. Comparable optical performance to flexible electrochromics and higher deformability provide attractive qualities for use in wearable, biometric monitoring, and robotic skin devices.

2.
Adv Mater ; 33(36): e2101469, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34297433

RESUMO

Emerging forms of soft, flexible, and stretchable electronics promise to revolutionize the electronics industries of the future offering radically new products that combine multiple functionalities, including power generation, with arbitrary form factor. For example, skin-like electronics promise to transform the human-machine-interface, but the softness of the skin is incompatible with traditional electronic components. To address this issue, new strategies toward soft and wearable electronic systems are currently being pursued, which also include stretchable photovoltaics as self-powering systems for use in autonomous and stretchable electronics of the future. Here recent developments in the field of stretchable photovoltaics are reviewed and their potential for various emerging applications are examined. Emphasis is placed on the different strategies to induce stretchability including extrinsic and intrinsic approaches. In the former case, engineering and patterning of the materials and devices are key elements while intrinsically stretchable systems rely on mechanically compliant materials such as elastomers and organic conjugated polymers. The result is a review article that provides a comprehensive summary of the progress to date in the field of stretchable solar cells from the nanoscale to macroscopic functional devices. The article is concluded by discussing the emerging trends and future developments.

3.
ACS Appl Mater Interfaces ; 11(19): 17570-17582, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30983315

RESUMO

The addition of dimethylsulfoxide and Zonyl into poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) can be combined to achieve excellent electrical, optical, and mechanical properties. We demonstrate that it is possible to produce highly transparent conducting electrodes (FoM > 35) with low Young's modulus and high carrier density. We investigated the relationship between the transport properties of PEDOT:PSS and the morphology and microstructure of these films by performing Hall effect measurement, atomic force microscopy, and grazing incidence wide-angle X-ray scattering (GIWAXS). Our analysis reveals the distinctive impact of the two additives on the PEDOT and PSS components in the solid-state PEDOT:PSS films. Both additives induce fibrillar formation in the film, and the combination of the two additives only enhances the fibrillary nature and the aggregations of both PEDOT and PSS components of the film. In situ GIWAXS allows to time-resolve the morphology evolution. Our analysis reveals the influence of additives on the aggregation and self-assembly behaviors of the PEDOT and PSS components. Aggregation occurs during the transition from wet to dry film, which is observed exclusively during the thermal annealing step of the as-cast hydrated film. These results indicate that the additives directly influence the self-assembly behaviors of PEDOT and PSS during the ink-to-solid phase transformation of the hydrated film, which occurs primarily during the initial seconds of post-deposition thermal annealing.

4.
Chemistry ; 19(23): 7532-46, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23576222

RESUMO

π-Conjugated thienylene-phenylene oligomers with fluorinated and dialkoxylated phenylene fragments have been designed and prepared to understand the interactions in fragment orbitals, the influence of the substituents (F, OMe) on the HOMO-LUMO gap, and the role of intramolecular non-covalent cumulative interactions in the construction of π-conjugated nanostructures. Their strong conjugation was also evidenced in the gas phase by UV photoelectron spectroscopy and theoretical calculations. These results can be explained by the crucial role of the relative energetic positions of the π orbitals of the dimethoxyphenylene, which was used to model the dialkoxyphenylene entity, in determining the π/π(*) orbital levels of the fluorinated phenylene entity. Dialkoxyphenylenes raise the HOMO orbitals, whereas fluorinated phenylenes lower the LUMO orbitals in the oligomers. In addition, the presence of S⋅⋅⋅F and H⋅⋅⋅F interactions in the fluorinated phenylene-thienylene compounds add to the S⋅⋅⋅O interactions in the mixed targets and contribute to the full conjugation in the oligomer, inducing weak inter-ring angles between the involved aromatic cycles. These results, which showed extended conjugation of the π system, were corroborated by a narrow HOMO-LUMO gap (according to DFT calculations) and by a relatively strong maximum wavelength (as obtained by TD-DFT calculations and experimental UV/Vis measurements). The crystallographic data of two mixed thienylene-(fluorinated and dialkoxylated phenylene) five-ring oligomers agree with the above results and show the formation of quasi-planar conformations with non-covalent S⋅⋅⋅O, H⋅⋅⋅F, and S⋅⋅⋅F interactions. These studies in the solid and gas phases show the relevance of associating dialkoxyphenylene and fluorinated phenylene fragments with thiophene to lead to oligomers with improved electronic delocalization for electronic or optoelectronic devices.


Assuntos
Cicloparafinas/química , Hidrocarbonetos Fluorados/química , Tiofenos/química , Modelos Moleculares , Conformação Molecular , Espectroscopia Fotoeletrônica
5.
Photochem Photobiol Sci ; 2(11): 1152-61, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14690228

RESUMO

The use of supramolecular catalysis to control the photoinduced dimerization of styrene, cinnamate, and stilbene chromophores is reported. The strategy employs the formation of a 2:1 supramolecular assembly in the presence of 5,5-dihexylbarbituric acid (DHB). A 3- to 10-fold increase in dimerization efficiency is observed in its presence, concomitant with accrued selectivity for the syn photodimers. The origin of the regioselectivity in the presence of DHB is discussed in terms of topochemical control within the supramolecular architecture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA