Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Iran J Basic Med Sci ; 27(2): 122-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234663

RESUMO

Lung cancer is one of the leading causes of death among all cancer deaths. This cancer is classified into two different histological subtypes: non-small cell lung cancer (NSCLC), which is the most common subtype, and small cell lung cancer (SCLC), which is the most aggressive subtype. Understanding the molecular characteristics of lung cancer has expanded our knowledge of the cellular origins and molecular pathways affected by each of these subtypes and has contributed to the development of new therapies. Traditional treatments for lung cancer include surgery, chemotherapy, and radiotherapy. Advances in understanding the nature and specificity of lung cancer have led to the development of immunotherapy, which is the newest and most specialized treatment in the treatment of lung cancer. Each of these treatments has advantages and disadvantages and causes side effects. Today, combination therapy for lung cancer reduces side effects and increases the speed of recovery. Despite the significant progress that has been made in the treatment of lung cancer in the last decade, further research into new drugs and combination therapies is needed to extend the clinical benefits and improve outcomes in lung cancer. In this review article, we discussed common lung cancer treatments and their combinations from the most advanced to the newest.

2.
Daru ; 32(1): 133-144, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38168007

RESUMO

PURPOSE: Despite the advances in treatment, lung cancer is a global concern and necessitates the development of new treatments. Biguanides like metformin (MET) and artemisinin (ART) have recently been discovered to have anti-cancer properties. As a consequence, in the current study, the anti-cancer effect of MET and ART co-encapsulated in niosomal nanoparticles on lung cancer cells was examined to establish an innovative therapy technique. METHODS: Niosomal nanoparticles (Nio-NPs) were synthesized by thin-film hydration method, and their physicochemical properties were assessed by FTIR. The morphology of Nio-NPs was evaluated with FE-SEM and AFM. The MTT assay was applied to evaluate the cytotoxic effects of free MET, free ART, their encapsulated form with Nio-NPs, as well as their combination, on A549 cells. Apoptosis assay was utilized to detect the biological processes involved with programmed cell death. The arrest of cell cycle in response to drugs was assessed using a cell cycle assay. Following a 48-h drug treatment, the expression level of hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and 7 genes were assessed using the qRT-PCR method. RESULTS: Both MET and ART reduced the survival rate of lung cancer cells in the dose-dependent manner. The IC50 values of pure ART and MET were 195.2 µM and 14.6 mM, respectively while in nano formulated form their IC50 values decreased to 56.7 µM and 78.3 µM, respectively. The combination of MET and ART synergistically decreased the proliferation of lung cancer cells, compared to the single treatments. Importantly, the combination of MET and ART had a higher anti-proliferative impact against A549 lung cancer cells, with lower IC50 values. According to the result of Real-time PCR, hTERT, Cyclin D1, BAX, BCL-2, Caspase 3, and Caspase 7 genes expression were considerably altered in treated with combination of nano formulated MET and ART compared to single therapies. CONCLUSION: The results of this study showed that the combination of MET and ART encapsulated in Nio-NPs could be useful for the treatment of lung cancer and can increase the efficiency of lung cancer treatment.


Assuntos
Apoptose , Artemisininas , Neoplasias Pulmonares , Metformina , Nanopartículas , Humanos , Artemisininas/farmacologia , Artemisininas/química , Artemisininas/administração & dosagem , Metformina/farmacologia , Metformina/química , Metformina/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Apoptose/efeitos dos fármacos , Nanopartículas/química , Níquel/química , Polietilenoglicóis/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Lipossomos/química , Proliferação de Células/efeitos dos fármacos
3.
Front Oncol ; 13: 1193708, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664043

RESUMO

Background: Despite current therapies, lung cancer remains a global issue and requires the creation of novel treatment methods. Recent research has shown that biguanides such as metformin (MET) and silibinin (SIL) have a potential anticancer effect. As a consequence, the effectiveness of MET and SIL in combination against lung cancer cells was investigated in this study to develop an effective and novel treatment method. Methods: Niosomal nanoparticles were synthesized via the thin-film hydration method, and field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR), atomic force microscopy (AFM), and dynamic light scattering (DLS) techniques were used to evaluate their physico-chemical characteristics. The cytotoxic effects of free and drug-loaded nanoparticles (NPs), as well as their combination, on A549 cells were assessed using the MTT assay. An apoptosis test was used while under the influence of medication to identify the molecular mechanisms behind programmed cell death. With the use of a cell cycle test, it was determined whether pharmaceutical effects caused the cell cycle to stop progressing. Additionally, the qRT-PCR technique was used to evaluate the levels of hTERT, BAX, and BCL-2 gene expression after 48-h medication treatment. Results: In the cytotoxicity assay, the growth of A549 lung cancer cells was inhibited by both MET and SIL. Compared to the individual therapies, the combination of MET and SIL dramatically and synergistically decreased the IC50 values of MET and SIL in lung cancer cells. Furthermore, the combination of MET and SIL produced lower IC50 values and a better anti-proliferative effect on A549 lung cancer cells. Real-time PCR results showed that the expression levels of hTERT and BCL-2 were significantly reduced in lung cancer cell lines treated with MET and SIL compared to single treatments (p< 0.001). Conclusion: It is anticipated that the use of nano-niosomal-formed MET and SIL would improve lung cancer treatment outcomes and improve the therapeutic efficiency of lung cancer cells.

4.
Mol Biol Rep ; 50(4): 3023-3033, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36662452

RESUMO

AIM: Folate receptor expression increase up to 30% in breast cancer cells and could be used as a possible ligand to couple to folate-functionalized nanoparticles. Metformin (Met) is an anti-hyperglycemic agent whose anti-cancer properties have been formerly reported. Consequently, in the current study, we aimed to synthesize and characterize folate-functionalized PLGA-PEG NPs loaded with Met and evaluate the anti-cancer effect against the MDA-MB-231 human breast cancer cell line. METHODS: FA-PLGA-PEG NPs were synthesized by employing the W1/O/W2 technique and their physicochemical features were evaluated by FE-SEM, TEM, FTIR, and DLS methods. The cytotoxic effects of free and Nano-encapsulated drugs were analyzed by the MTT technique. Furthermore, RT-PCR technique was employed to assess the expression levels of apoptotic and anti-apoptotic genes. RESULT: MTT result indicated Met-loaded FA-PLGA-PEG NPs exhibited cytotoxic effects in a dose-dependently manner and had more cytotoxic effects relative to other groups. The remarkable down-regulation (hTERT and Bcl-2) and up-regulation (Caspase7, Caspase3, Bax, and p53) gene expression were shown in treated MDA-MB-231 cells with Met-loaded FA-PLGA-PEG NPs. CONCLUSION: Folate-Functionalized PLGA-PEG Nanoparticles are suggested as an appropriate approach to elevate the anticancer properties of Met for improving the treatment effectiveness of breast cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Metformina , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Ácido Fólico/farmacologia , Metformina/uso terapêutico , Polietilenoglicóis/química , Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Nanopartículas/química
5.
Asian Pac J Cancer Prev ; 23(2): 519-527, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35225464

RESUMO

OBJECTIVE: Chemotherapeutic combinational approaches would be more efficient in decreasing toxicity of drug, preventing tumor progression in relation to either drug alone. Hence, the aim of this study is to constract magnetic PLGA/PEG nanoparticles (NPs) co-loaded with Metformin (Met) and Silibinin (Sil) to investigate their cytotoxicity as well as their impact on  mRNA expression levels of leptin and leptin receptor genes in A549 lung cancer cells. MATERIALS AND METHODS: The synthesized NPs were characterized by FTIR, FE-SEM, and VSM and then, MTT assay was utilized to assess and compare the cytotoxicity of various concentrations of the chemotheruptic molecules in pure and nanoformulated forms as well as in alone and combination state after 48 h exposure time. Moreover, the mRNA levels of leptin and its receptor genes expression were studied by quantitative real-time PCR. By co-encapsulation of Met and Sil into PLGA/PEG/ Fe3O4, cytotoxic efficiency of the compounds considerably augmented for all concentrations. RESULTS: Cytotoxicity assay displayed that combination of Met and Sil had a synergistic concentration-dependent effect on A549 lung cancer cells. Moreover, qPCR data revealed that the expression levels of the leptin and leptin receptor was considerably reduced with increasing concentrations of drug-encapsulated magnetic NPs, especially Met/Sil-encapsulated PLGA/PEG/ Fe3O4 NPs. CONCLUSION: Present preliminary study shows that co-incorporating Met, Sil, Fe3O4 into PLGA/PEG NPs might provide a more promising and safe treatment strategy for lung cancer.


Assuntos
Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Metformina/administração & dosagem , Silibina/administração & dosagem , Células A549 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leptina/metabolismo , Neoplasias Pulmonares/genética , Fenômenos Magnéticos , Sistemas de Liberação de Fármacos por Nanopartículas/administração & dosagem , Polietilenoglicóis , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Receptores para Leptina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA