Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 97(14): 5043-5052, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28722133

RESUMO

BACKGROUND: Triticale gluten still remains very poorly characterised rheologically. In this study the mechanical spectra of gluten isolated from four triticale cultivars were registered and fitted with Cole-Cole functions yielding the visco-elastic plateau parameters. Master spectra were calculated. A retardation test was performed and used to calculate the composite mechanical spectra and the width of visco-elastic plateau l. Protein fractional composition of triticale flour and gluten was studied using capillary zone electrophoresis. RESULTS: Differentiated HMW-GS/SS compositions were identified in the triticale cultivars studied. The rheological parameters reached the following values: JN0 1.05·10-3 to 2.69·10-3 Pa-1 , GN0 372 to 956 Pa, ω0 0.003 to 0.06 rad s-1 , l 169 to 3121, Je0 1.57·10-3 to 5.03·10-3 Pa-1 , Ge0 199 to 637 Pa and η0 1.06·107 to 3.93·107 Pa s. CONCLUSIONS: Visco-elastic properties of triticale gluten correspond to the lower end of medium visco-elasticity shown by common wheat gluten. Master spectra and the composite mechanical spectra prove that four triticale glutens exhibit practically an identical type of visco-elastic behaviour of a biopolymeric visco-elastic liquid similar to wheat gluten. The visco-elastic plateau parameters GN0 , JN0 , ω0 and l appeared significantly correlated with the contents of prolamins and secaloglutenins in triticale flours and glutens. © 2017 Society of Chemical Industry.


Assuntos
Glutens/química , Triticale/química , Elasticidade , Eletroforese Capilar , Farinha/análise , Prolaminas/análise , Reologia , Triticale/classificação , Viscosidade
2.
J Sci Food Agric ; 97(15): 5083-5091, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28429474

RESUMO

BACKGROUND: The major determinants of wheat quality are Glu-1 and Glu-3 glutenin loci and environmental factors. Additive effects of alleles at the Glu-1 and Glu-3 loci, as well as their interactions, were evaluated for dough rheology and baking properties in four groups of wheat doubled haploid lines differing in high- and low-molecular-weight glutenin composition. RESULTS: Flour quality, Reomixer (Reologica Instruments, Lund, Sweden), dough extension, Farinograph (Brabender GmbH, Duisburg, Germany) and baking parameters were determined. Groups of lines with the alleles Glu-A3b and Glu-B3d were characterized by higher values of dough and baking parameters compared to those with the Glu-A3e and Glu-B3a alleles. Effects of interactions between allelic variants at the Glu-1 and Glu-3 loci on Reomixer parameters, dough extension tests and baking parameters were significant, although additive effects of individual alleles were not always significant. CONCLUSION: The allelic variants at Glu-B3 had a much greater effect on dough rheological parameters than the variants at Glu-A3 or Glu-D3 loci. The effect of allelic variations at the Glu-D3 loci on rheological parameters and bread-making quality was non-significant, whereas their interactions with a majority of alleles at the other Glu-1 × Glu-3 loci were significant. © 2017 Society of Chemical Industry.


Assuntos
Glutens/genética , Triticum/genética , Alelos , Pão/análise , Culinária , Glutens/metabolismo , Haploidia , Locos de Características Quantitativas , Reologia , Triticum/química , Triticum/metabolismo
3.
J Appl Genet ; 58(1): 37-48, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27502940

RESUMO

The quality of wheat depends on a large complex of genes and environmental factors. The objective of this study was to identify quantitative trait loci controlling technological quality traits and their stability across environments, and to assess the impact of interaction between alleles at loci Glu-1 and Glu-3 on grain quality. DH lines were evaluated in field experiments over a period of 4 years, and genotyped using simple sequence repeat markers. Lines were analysed for grain yield (GY), thousand grain weight (TGW), protein content (PC), starch content (SC), wet gluten content (WG), Zeleny sedimentation value (ZS), alveograph parameter W (APW), hectolitre weight (HW), and grain hardness (GH). A number of QTLs for these traits were identified in all chromosome groups. The Glu-D1 locus influenced TGW, PC, SC, WG, ZS, APW, GH, while locus Glu-B1 affected only PC, ZS, and WG. Most important marker-trait associations were found on chromosomes 1D and 5D. Significant effects of interaction between Glu-1 and Glu-3 loci on technological properties were recorded, and in all types of this interaction positive effects of Glu-D1 locus on grain quality were observed, whereas effects of Glu-B1 locus depended on alleles at Glu-3 loci. Effects of Glu-A3 and Glu-D3 loci per se were not significant, while their interaction with alleles present at other loci encoding HMW and LMW were important. These results indicate that selection of wheat genotypes with predicted good bread-making properties should be based on the allelic composition both in Glu-1 and Glu-3 loci, and confirm the predominant effect of Glu-D1d allele on technological properties of wheat grains.


Assuntos
Glutens/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , DNA de Plantas/genética , Grão Comestível/química , Grão Comestível/genética , Marcadores Genéticos , Genótipo , Repetições de Microssatélites
4.
J Sci Food Agric ; 97(7): 2030-2041, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27558295

RESUMO

BACKGROUND: Wild emmer wheat could serve as a source of novel variation in grain quality and stress resistance for wheat breeding. A set of Triticum durum-T. dicoccoides chromosome substitution lines [LDN(DIC)] and the parental recipient cv. Langdon grown under contrasting water and nitrogen availability in the soil was examined in this study to identify differences in grain quality traits and dough rheological properties. RESULTS: Significant genotypic variation was found among the materials for studied traits. This variation was also considerably affected by soil treatments and G × E interactions. The substitutions LDN(DIC-1A) and LDN(DIC-1B) showed separate differentiation in the composition of glutenin sub-units. The results indicated that primarily chromosome DIC-6B is stable source of an enhanced grain protein content and advantageous dough rheological properties. Similar features seem to be shown by the substitutions with the DIC-1A, DIC-2A and DIC-6A, but not under nitrogen shortage, when generally a considerable decrease was noticed in the range of genotypic variation in grain quality. CONCLUSIONS: The substitution lines, particularly those with DIC-6B and DIC-6A and to a lesser extent DIC-1A and DIC-2A, were distinguished by advantageous grain quality traits, mixing properties and dough functionality and appear to be the most promising sources of innovative genes for wheat breeding. © 2016 Society of Chemical Industry.


Assuntos
Nitrogênio/metabolismo , Triticum/química , Água/metabolismo , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Secas , Genótipo , Glutens/análise , Glutens/metabolismo , Fenótipo , Reologia , Sementes/química , Sementes/genética , Sementes/metabolismo , Triticum/genética , Triticum/metabolismo , Água/análise
5.
J Agric Food Chem ; 62(43): 10535-41, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25307487

RESUMO

In this study, identification and characterization of the rye HMW secalin subunit (HMW-SS) composition in 68 inbred rye (Secale cereale L.) lines was performed by capillary zone electrophoresis (CZE). The HMW-SS were separated in an uncoated fused-silica capillary using an isoelectric iminodiacetic buffer in combination with poly(ethylene oxide), lauryl sulfobetaine, and acetonitrile as the separation buffer. The separations of the nonalkylated HMW-SS provided very good resolution and high reproducibility. Generally, the x-type rye HMW-SS were more abundant and have longer migration times than the y-type subunits. Both types of rye HMW-SS were separated into the major protein peak and one or two minor peaks. In total, seven x-type HMW-SS, five of which were newly identified subunits, and six y-type subunits, four of which were new, were distinguished on the basis of their CZE migration times. The migration order of the rye HMW-SS using CZE differed considerably from the relative electrophoretic mobilities in the SDS-PAGE gels.


Assuntos
Glutens/química , Glutens/metabolismo , Secale/metabolismo , Eletroforese Capilar , Eletroforese em Gel de Poliacrilamida , Glutens/genética , Endogamia , Peso Molecular , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Secale/química , Secale/genética
6.
Talanta ; 129: 9-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25127558

RESUMO

In this study, the capillary isoelectric focusing (CIEF) method for the separation and charge characterisation of the heterogeneity of high molecular-weight-glutenin subunits (HMW-GS) in common wheat (Triticum aestivum L.) using linear polyacrylamide (LPA) and polyvinyl alcohol (PVA) coated capillaries was developed. Particularly good repeatability and well-resolved charge isoform profiles were obtained by introducing a mixture of carrier ampholytes (pH 3-10 and pH 5-8), a high concentration of urea (6M) and SB3-12 as detergent in a sample solution during separation in a PVA-coated capillary. One major and one or two minor isoforms were observed for the individual HMW-GS. These isoforms were satisfactorily separated using a pH gradient into two groups: y-type isoforms and x-type isoforms encoded by the Glu-B1 locus with shorter migration times and remaining x-type isoforms with longer times. The method produced from eight to twelve isoforms of wheat HMW-GS with pI points in the range of 4.72-6.98. Generally, the minor isoforms were more acidic compared with the major isoform. The y-type subunits had an approximately neutral character (pI 6.70-6.98); however, x-types showed a weakly acidic character (pI 4.72-5.23), with the exception of subunits encoded by the Glu-B1 locus. The isoelectric point peak profiles were compared with capillary zone electrophoresis (CZE) electropherograms. Generally, the number of detected isoforms for the particular HMW-GS detected using both methods were similar.


Assuntos
Eletroforese Capilar/métodos , Glutens/química , Focalização Isoelétrica/métodos , Triticum/química , Resinas Acrílicas/química , Pão , Eletroforese em Gel de Poliacrilamida , Farinha , Análise de Alimentos/métodos , Concentração de Íons de Hidrogênio , Peso Molecular , Álcool de Polivinil/química , Isoformas de Proteínas/química , Ureia/química
7.
Int J Mol Sci ; 14(8): 15595-614, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23896593

RESUMO

Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat) genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8). Genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH) confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW) glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number) of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax), and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement.


Assuntos
Cromossomos de Plantas/genética , Triticum/metabolismo , Alelos , Genótipo , Glutens/química , Glutens/metabolismo , Hibridização in Situ Fluorescente , Peso Molecular , Reologia , Triticum/genética
8.
Int J Mol Sci ; 13(4): 4186-4201, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22605973

RESUMO

The influence of grain hardness, determined by using molecular markers and physical methods (near-infrared (NIR) technique and particle size index-PSI) on dough characteristics, which in turn were determined with the use of a farinograph and reomixer, as well as bread-making properties were studied. The material covered 24 winter wheat genotypes differing in grain hardness. The field experiment was conducted at standard and increased levels of nitrogen fertilization. Results of molecular analyses were in agreement with those obtained by the use of physical methods for soft-grained lines. Some lines classified as hard (by physical methods) appeared to have the wild-type Pina and Pinb alleles, similar to soft lines. Differences in dough and bread-making properties between lines classified as hard and soft on the basis of molecular data appeared to be of less significance than the differences between lines classified as hard and soft on the basis of physical analyses of grain texture. Values of relative grain hardness at the increased nitrogen fertilization level were significantly higher. At both fertilization levels the NIR parameter determining grain hardness was significantly positively correlated with the wet gluten and sedimentation values, with most of the rheological parameters and bread yield. Values of this parameter correlated with quality characteristics in a higher degree than values of particle size index.


Assuntos
Pão/análise , Proteínas Alimentares/análise , Qualidade dos Alimentos , Triticum/classificação , Triticum/fisiologia , Glutens/análise , Dureza , Fenótipo , Proteínas de Plantas/análise , Triticum/genética
9.
Electrophoresis ; 31(13): 2226-35, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20593398

RESUMO

A rapid and reliable method for separation and characterization of the variability of high-molecular-weight secalin subunits (HMW-SS) in hexaploid triticale (x Triticosecale Wittmack) by CZE has been developed. In this method, a mixture of two poly(ethylene oxide) polymers differing in molecular weight and a high concentration of ACN in isoelectric buffer was applied as the running electrolyte. For dynamic coating of the capillary inner wall, a low-concentration mixture of poly(vinylpyrrolidone) and hydroxypropylmethylcellulose was employed. Wide allelic variations in rye HMW-SS composition, including some novel x- and y-type HMW-SS, were detected by CZE. The CZE electropherograms of HMW-SS showed two groups of peaks in accordance with y- and x-type subunits, with migration times of 8.0-8.8 and 11.0-13.3 min, respectively. HMW-SS differed in migration times from the simultaneously resolved HMW glutenin subunits, but frequently had very similar electrophoretic mobilities during separation by SDS-PAGE. Each of the two rye subunits 2r and 6.5r detected by SDS-PAGE represents in fact two subunits (5.1r or 5.2r, and 6.4r or 6.5r, respectively). After analyzing 106 European triticale cultivars, 12 HMW-SS were identified (six x-type and six y-type). They form six allelic variants of these subunits. The simultaneous separation and identification of triticale HMW glutenin and secalin subunits by CZE is an efficient alternative to SDS-PAGE and should facilitate breeding of valuable cultivars.


Assuntos
Grão Comestível/química , Eletroforese Capilar/métodos , Glutens/análise , Sementes/química , Acetonitrilas/química , Alelos , Eletroforese em Gel de Poliacrilamida , Glutens/classificação , Peso Molecular , Polietilenoglicóis/química
10.
J Sep Sci ; 33(4-5): 643-50, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20063356

RESUMO

Differences in kernel texture are mainly caused by specific secaloindoline (SIN) proteins occurring in friabilin fraction of hexaploid triticale (x Triticosecale Wittmack) grain. SINs were isolated using Triton X-114 partitioning from either kernels/flour or starch of five triticale cultivars with wide range of different hardness. Crude SIN fraction was obtained by size-exclusion HPLC. SINs were separated on an uncoated fused-silica capillary using the iminodiacetic (IDA) buffer in conjunction with lower-concentrated poly(ethylene oxide) and ACN. A low-concentrate mixture of hydrophilic polymers, PVP and hydroxypropylmethylcellulose in IDA buffer was employed for dynamic coating of capillary inner wall. In total, on the basis of CZE profiles, two SIN-a proteins and two SIN-b proteins were identified. Allelic forms SIN-a1 and SIN-b1 have both two soft and one medium hard genotypes, however other allelic forms, designed as SIN-a2 and SIN-b2, were identified in hard and other medium hard cultivars. The CZE profiles showed that the ratio of the peak areas of SIN-b proteins isolated from triticale starch can be preliminarily used to distinguish cultivars with soft and hard grain.


Assuntos
Proteínas de Plantas/química , Proteínas Serina-Treonina Quinases/química , Secale/química , Sementes/química , Triticum/química , Triticum/genética , Alelos , Eletroforese Capilar , Eletroforese em Gel de Poliacrilamida , Endosperma/química , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética
11.
J Agric Food Chem ; 57(6): 2119-25, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19228059

RESUMO

Capillary zone electrophoretic (CZE) analysis of monomeric prolamins (wheat gliadins and rye secalins) covered 28 hexaploid triticale ( Triticosecale x Wittm.) cultivars. The ethanol-soluble proteins were separated on an uncoated fused-silica capillary using the isoelectric 60 mM iminodiacetic (IDA) buffer in conjunction with 20% (v/v) acetonitrile and 0.075% (w/v) polyvinylpyrrolidone (PVP). For each separation, dynamic coating of the capillary wall with a buffer containing 0.1 M IDA and 0.05% (w/v) hydroxypropylmethylcellulose (HPMC) was performed. Separations of prolamins provided very good resolution and high reproducibility (<0.8% RSD). Prolamin profiles of all analyzed cultivars showed both qualitative and quantitative differences, including number of peaks, presence or absence of peaks, and area of peaks. The number of prolamin peaks detected in particular triticale cultivars varied from 22 to 28; in total, 56 components were distinguished. The CZE electropherograms of prolamins showed five main groups of protein peaks, in order of mobility alpha-prolamins, beta-prolamins, gamma-prolamins, omega1-prolamins, and omega2-prolamins, with migration times of 6.8-7.7, 7.8-10.4, 10.5-12.2, 12.3-17.4, and 17.5-25.6 min, respectively. Triticale seeds in comparison with wheat contained fewer alpha-prolamins and higher quantity of omega-prolamins. Hierarchical clustering of the investigated cultivars was based on Bhattacharyya distances calculated from the CZE data. The cultivars grouped in four main clusters. The obtained CZE results were compared with A-PAGE data.


Assuntos
Grão Comestível/química , Eletroforese Capilar/métodos , Prolaminas/análise , Sementes/química , Grão Comestível/classificação , Grão Comestível/genética , Eletroforese em Gel de Poliacrilamida , Gliadina/análise , Glutens/análise , Prolaminas/isolamento & purificação , Reprodutibilidade dos Testes , Secale/química , Triticum/química
12.
J Agric Food Chem ; 56(20): 9355-61, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-18808142

RESUMO

An improved method for separating and characterizing high molecular weight glutenin subunits (HMW-GS) in hexaploid triticale by capillary zone electrophoresis (CZE) was developed. A low-concentrate mixture of hydrophilic polymers, poly(vinylpyrrolidone) (PVP) and hydroxypropylmethylcellulose (HPMC), in an isoelectric buffer was employed for dynamic coating of the capillary inner wall. In separation buffer PVP with lower concentrated poly(ethylene oxide) (PEO) was replaced. The CZE electropherograms of HMW-GS showed two group peaks in accordance with x- and y-type subunits with migration times of 6.8-7.8 and 8.4-11.5 min, respectively. In total, 14 HMW subunits (2 subunits encoded by Glu-A1 locus and 12 by Glu-B1) were identified. The CZE analyses revealed that each of the subunits Bx7 and By8 determined by SDS-PAGE makes up three subunits (Bx6.8, Bx7, and Bx7* and By8, By8*, and new By8**, respectively), with different migration times. It was also shown that the subunits By18 and By20 in triticale determined by SDS-PAGE have different migration times in comparison with the same subunits in bread wheat. For these new HMW-GS, the following names were assigned: By18* instead of By18 and By20* instead of By20. The presented CZE method is an efficient alternative to the SDS-PAGE procedure for early selection of useful triticale genotypes with good breadmaking quality.


Assuntos
Grão Comestível/química , Eletroforese Capilar/métodos , Glutens/química , Eletroforese em Gel de Poliacrilamida , Peso Molecular , Subunidades Proteicas/química
13.
J Appl Genet ; 48(4): 347-57, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17998591

RESUMO

Molecular markers were used to identify the allele/gene composition of complex loci Glu-A1 and Glu-B1 of high-molecular-weight (HMW) glutenin subunits in triticale cultivars. Forty-six Polish cultivars of both winter and spring triticale were analysed with 7 PCR-based markers. Amplified DNA fragments of HMW glutenin Glu-1 genes were separated by agarose slab-gel electrophoresis. Differences between all 3 alleles at the locus Glu-A1 [Glu-A1a (encoding Ax1), 1b (Ax2*), and 1c (AxNull)], 4 alleles at Glu-B1-1 [Glu-B1-1a (Bx7), 1b (Bx7*), 1d (Bx6), 1ac (Bx6.8)], and 5 alleles at Glu-B1-2 [Glu-B1-2a (By8), 2b (By9), 2o (By8*), 2s (By18*), and 2z (By20*)] were revealed. In total, 16 allele combinations were observed. Molecular markers are particularly helpful in distinguishing the wheat Glu-A1a and Glu-A1b alleles from the rye Glu-R1a and Glu-R1b alleles in triticale genotypes, respectively, as well as subunits Bx7 from Bx7* and By8 from By8*, which could not be distinguished by SDS-PAGE. Novel glutenin subunits By18* and By20* (unique to triticale) were identified. HMW glutenin subunit combinations of Polish triticale cultivars, earlier identified by SDS-PAGE analyses, were verified by PCR-based DNA markers. Rapid identification of wheat Glu-1 alleles by molecular markers can be an efficient alternative to the standard separation procedure for early selection of useful triticale genotypes with good bread-making quality.


Assuntos
Grão Comestível/genética , Genes de Plantas , Glutens/genética , Alelos , Eletroforese em Gel de Poliacrilamida , Marcadores Genéticos , Glutens/química , Peso Molecular , Polônia , Reação em Cadeia da Polimerase , Subunidades Proteicas/química , Subunidades Proteicas/genética , Secale/genética , Triticum/genética
14.
J Chromatogr A ; 1032(1-2): 313-8, 2004 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-15065810

RESUMO

The unique bread-making properties of wheat are closely correlated with composition and quantity of high-molecular-mass (HMW) glutenin subunits encoded by the Glu-1 genes. We report the development of a multiplex polymerase chain reaction (PCR) method to identify bread wheat genotypes carrying HMW glutenin allele composition of Glu-1 complex loci (Glu-A1, Glu-B1 and Glu-D1) by capillary electrophoresis(CE) with laser-induced fluorescence (LIF) detection. Two triplex primer sets of HMW glutenin subunit genes were examined. An automated and rapid CE-LIF technique is helpful in the multiplex PCR optimization process. Two fluorescent intercalating dyes (EnhanCE, and YO-PRO-1) are compared for detection of DNA fragments. Amplified DNA fragments of HMW glutenin Glu-1 genes were well separated both by agarose slab-gel electrophoresis and CE, and revealed minor differences between the sequences of 1Ax2*, 1Axnull, 1Bx6, 1Bx7, 1Bx17 and 1Dx5 genes. Moreover, CE technique requires samples of smaller volumes in comparison to slab-gel electrophoresis, and data can be obtained in less than 20 min. There was a very high concordance in the assessment of the molecular size of PCR-generated DNA markers. Fast and accurate identification of molecular markers of Glu-1 genes by CE-LIF can be an efficient alternative to standard procedure separation for early selection of useful wheat genotypes with good bread-making quality.


Assuntos
Eletroforese Capilar/métodos , Glutens/análogos & derivados , Glutens/genética , Reação em Cadeia da Polimerase/métodos , Espectrometria de Fluorescência/métodos , Triticum/genética , Sequência de Bases , Primers do DNA , Eletroforese em Gel de Ágar , Etídio , Lasers , Peso Molecular
15.
J Appl Genet ; 44(4): 459-71, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14617825

RESUMO

Wheat bread-making quality is closely correlated with composition and quantity of gluten proteins, in particular with high-molecular weight (HMW) glutenin subunits encoded by the Glu-1 genes. A multiplex polymerase chain reaction (PCR) method was developed to identify the allele composition of HMW glutenin complex Glu-1 loci (Glu-A1, Glu-B1 and Glu-D1) in common wheat genotypes. The study of multiplex PCR to obtain a well-balanced set of amplicons involved examination of various combinations of selected primer sets and/or thermal cycling conditions. One to three simultaneously amplified DNA fragments of HMW glutenin Glu-1 genes were separated by agarose slab-gel electrophoresis and differences between Ax1, Ax2* and Axnull genes of Glu-A1 loci, Bx6, Bx7 and Bx17 of Glu-B1, and Dx2, Dx5 and Dy10 genes of Glu-D1 loci were revealed. A complete agreement was found in identification of HMW glutenin subunits by both multiplex PCR analysis and SDS-PAGE for seventy-six Polish cultivars/strains of both spring and winter common wheat. Rapid identification of molecular markers of Glu-1 alleles by multiplex PCR can be an efficient alternative to the standard separation procedure for early selection of useful wheat genotypes with good bread-making quality.


Assuntos
Glutens/análogos & derivados , Glutens/genética , Triticum/genética , Alelos , Eletroforese em Gel de Poliacrilamida , Marcadores Genéticos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA