Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(3): 1860-1873, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38215281

RESUMO

Biotin synthase (BioB) is a member of the Radical SAM superfamily of enzymes that catalyzes the terminal step of biotin (vitamin B7) biosynthesis, in which it inserts a sulfur atom in desthiobiotin to form a thiolane ring. How BioB accomplishes this difficult reaction has been the subject of much controversy, mainly around the source of the sulfur atom. However, it is now widely accepted that the sulfur atom inserted to form biotin stems from the sacrifice of the auxiliary 2Fe-2S cluster of BioB. Here, we bioinformatically explore the diversity of BioBs available in sequence databases and find an unexpected variation in the coordination of the auxiliary iron-sulfur cluster. After in vitro characterization, including the determination of biotin formation and representative crystal structures, we report a new type of BioB utilized by virtually all obligate anaerobic organisms. Instead of a 2Fe-2S cluster, this novel type of BioB utilizes an auxiliary 4Fe-5S cluster. Interestingly, this auxiliary 4Fe-5S cluster contains a ligated sulfide that we propose is used for biotin formation. We have termed this novel type of BioB, Type II BioB, with the E. coli 2Fe-2S cluster sacrificial BioB representing Type I. This surprisingly ubiquitous Type II BioB has implications for our understanding of the function and evolution of Fe-S clusters in enzyme catalysis, highlighting the difference in strategies between the anaerobic and aerobic world.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Escherichia coli/metabolismo , Biotina/química , Proteínas de Escherichia coli/química , Enxofre/química , Sulfurtransferases/metabolismo , Proteínas Ferro-Enxofre/química
2.
Metab Eng ; 60: 97-109, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32220614

RESUMO

Biotin, thiamine, and lipoic acid are industrially important molecules naturally synthesized by microorganisms via biosynthetic pathways requiring iron-sulfur (FeS) clusters. Current production is exclusively by chemistry because pathway complexity hinders development of fermentation processes. For biotin, the main bottleneck is biotin synthase, BioB, a S-adenosyl methionine-dependent radical enzyme that converts dethiobiotin (DTB) to biotin. BioB overexpression is toxic, though the mechanism remains unclear. We identified single mutations in the global regulator IscR that substantially improve cellular tolerance to BioB overexpression, increasing Escherichia coli DTB-to-biotin biocatalysis by more than 2.2-fold. Based on proteomics and targeted overexpression of FeS-cluster biosynthesis genes, FeS-cluster depletion is the main reason for toxicity. We demonstrate that IscR mutations significantly affect cell viability and improve cell factories for de novo biosynthesis of thiamine by 1.3-fold and lipoic acid by 1.8-fold. We illuminate a novel engineering target for enhancing biosynthesis of complex FeS-cluster-dependent molecules, paving the way for industrial fermentation processes.


Assuntos
Biotina/biossíntese , Proteínas de Escherichia coli/genética , Engenharia Metabólica/métodos , Tiamina/biossíntese , Ácido Tióctico/biossíntese , Fatores de Transcrição/genética , Biotina/análogos & derivados , Biotina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Proteômica , Sulfurtransferases/metabolismo
3.
Methods Mol Biol ; 1116: 59-72, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24395357

RESUMO

Uracil excision-based cloning through USER™ (Uracil-Specific Excision Reagent) is an efficient ligase-free cloning technique that comprises USER cloning, USER fusion, and USER cassette-free (UCF) USER fusion. These USER-derived cloning techniques enable seamless assembly of multiple DNA fragments in one construct. Though governed by a few simple rules primer design for USER-based fusion of PCR fragments can prove time-consuming for inexperienced users. The Primer Help for USER (PHUSER) software is an easy-to-use primer design tool for USER-based methods. In this chapter, we present a PHUSER software protocol for designing primers for USER-derived cloning techniques.


Assuntos
Clonagem Molecular/métodos , Primers do DNA/genética , Software , Plasmídeos/genética , Reação em Cadeia da Polimerase
4.
J Biotechnol ; 167(3): 296-301, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23830903

RESUMO

Camalexin is a tryptophan-derived phytoalexin that is induced in the model plant Arabidopsis thaliana upon pathogen attack. Only few genes in the biosynthetic pathway of camalexin remain unidentified, however, investigation of candidate genes for these steps has proven particularly difficult partly because of redundancy in the genome of Arabidopsis. Here we describe metabolic engineering of the camalexin biosynthetic pathway in the transient Nicotiana benthamiana expression system. Camalexin accumulated in levels corresponding to what is seen in induced Arabidopsis thaliana. We have used this system to evaluate candidate genes suggested to be involved in the camalexin pathway. This has provided biochemical evidence for CYP71A12 conducting same reaction as CYP71A13 in the pathway. We discuss the prospects of using metabolic engineering of camalexin, both with respect to engineering plant defense and as a tool for screening yet unidentified candidate genes in the camalexin pathway.


Assuntos
Indóis/metabolismo , Engenharia Metabólica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiazóis/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Redes e Vias Metabólicas , Nicotiana/genética , Nicotiana/metabolismo
5.
Methods Enzymol ; 515: 291-313, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22999179

RESUMO

The diverse biological roles of glucosinolates as plant defense metabolites and anticancer compounds have spurred a strong interest in their biosynthetic pathways. Since the completion of the Arabidopsis genome, functional genomics approaches have enabled significant progress on the elucidation of glucosinolate biosynthesis, although in planta validation of candidate gene function often is hampered by time-consuming generation of knockout and overexpression lines in Arabidopsis. To better exploit the increasing amount of data available from genomic sequencing, microarray database and RNAseq, time-efficient methods for identification and validation of candidate genes are needed. This chapter covers the methodology we are using for gene discovery in glucosinolate engineering, namely, guilt-by-association-based in silico methods and fast proof-of-function screens by transient expression in Nicotiana benthamiana. Moreover, the lessons learned in the rapid, transient tobacco system are readily translated to our robust, versatile yeast expression platform, where additional genes critical for large-scale microbial production of glucosinolates can be identified. We anticipate that the methodology presented here will be beneficial to elucidate and engineer other plant biosynthetic pathways.


Assuntos
Genes de Plantas , Glucosinolatos/biossíntese , Engenharia Metabólica/métodos , Engenharia Metabólica/normas , Agrobacterium/genética , Agrobacterium/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Mineração de Dados , Engenharia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glucosinolatos/genética , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Nicotiana/genética , Nicotiana/metabolismo , Transformação Genética
6.
Metab Eng ; 14(2): 104-11, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22326477

RESUMO

Epidemiological studies have shown that consumption of cruciferous vegetables, such as, broccoli and cabbages, is associated with a reduced risk of developing cancer. This phenomenon has been attributed to specific glucosinolates among the ~30 glucosinolates that are typically present as natural products characteristic of cruciferous plants. Accordingly, there has been a strong interest to produce these compounds in microbial cell factories as it will allow production of selected beneficial glucosinolates. We have developed a versatile platform for stable expression of multi-gene pathways in the yeast, Saccharomyces cerevisiae. Introduction of the seven-step pathway of indolylglucosinolate from Arabidopsis thaliana to yeast resulted in the first successful production of glucosinolates in a microbial host. The production of indolylglucosinolate was further optimized by substituting supporting endogenous yeast activities with plant-derived enzymes. Production of indolylglucosinolate serves as a proof-of-concept for our expression platform, and provides a basis for large-scale microbial production of specific glucosinolates for the benefit of human health.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/enzimologia , Glucosinolatos/biossíntese , Engenharia Metabólica , Saccharomyces cerevisiae/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/química , Glucosinolatos/química , Humanos , Neoplasias/epidemiologia , Neoplasias/prevenção & controle , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
7.
Appl Environ Microbiol ; 77(9): 3044-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21398493

RESUMO

Assigning functions to newly discovered genes constitutes one of the major challenges en route to fully exploiting the data becoming available from the genome sequencing initiatives. Heterologous expression in an appropriate host is central in functional genomics studies. In this context, filamentous fungi offer many advantages over bacterial and yeast systems. To facilitate the use of filamentous fungi in functional genomics, we present a versatile cloning system that allows a gene of interest to be expressed from a defined genomic location of Aspergillus nidulans. By a single USER cloning step, genes are easily inserted into a combined targeting-expression cassette ready for rapid integration and analysis. The system comprises a vector set that allows genes to be expressed either from the constitutive PgpdA promoter or from the inducible PalcA promoter. Moreover, by using the vector set, protein variants can easily be made and expressed from the same locus, which is mandatory for proper comparative analyses. Lastly, all individual elements of the vectors can easily be substituted for other similar elements, ensuring the flexibility of the system. We have demonstrated the potential of the system by transferring the 7,745-bp large mpaC gene from Penicillium brevicompactum to A. nidulans. In parallel, we produced defined mutant derivatives of mpaC, and the combined analysis of A. nidulans strains expressing mpaC or mutated mpaC genes unequivocally demonstrated that mpaC indeed encodes a polyketide synthase that produces the first intermediate in the production of the medically important immunosuppressant mycophenolic acid.


Assuntos
Aspergillus nidulans/genética , Expressão Gênica , Engenharia Genética/métodos , Genética Microbiana/métodos , Biologia Molecular/métodos , Genes Fúngicos , Família Multigênica , Ácido Micofenólico/metabolismo , Penicillium/enzimologia , Penicillium/genética , Policetídeo Sintases/biossíntese , Policetídeo Sintases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA