RESUMO
Diamond, as the densest allotrope of carbon, displays a range of exemplary material properties that are attractive from a device perspective. Despite diamond displaying high carbon-carbon bond strength, ultrashort (femtosecond) pulse laser radiation can provide sufficient energy for highly localized internal breakdown of the diamond lattice. The less-dense carbon structures generated on lattice breakdown are subject to significant pressure from the surrounding diamond matrix, leading to highly unusual formation conditions. By tailoring the laser dose delivered to the diamond, it is shown that it is possible to create continuously modified internal tracks with varying electrical conduction properties. In addition to the widely reported conducting tracks, conditions leading to semiconducting and insulating written tracks have been identified. High-resolution transmission electron microscopy (HRTEM) is used to visualize the structural transformations taking place and provide insight into the different conduction regimes. The HRTEM reveals a highly diverse range of nanocarbon structures are generated by the laser irradiation, including many signatures for different so-called diaphite complexes, which have been seen in meteorite samples and seem to mediate the laser-induced breakdown of the diamond. This work offers insight into possible formation methods for the diamond and related nanocarbon phases found in meteorites.
RESUMO
Fabrication techniques for nitrogen-vacancy centres in diamond require the creation of Frenkel defects (vacancy-interstitial pairs) the components of which can interact with formed NV centres affecting their photophysical properties. Here we use Density Functional Theory simulations of inter-defect electronic and strain interactions to explore how the NV centre and carbon self-interstitial interact in different configurations. We find that hybridization occurs between the NV centre e-orbitals and the carbon self-interstitial when an interstitial is present on the vacancy side of the NV centre. We propose that this phenomenon may explain the fluorescence blinking of NV centres observed during annealing. This article is part of the Theo Murphy meeting issue 'Diamond for quantum applications'.
RESUMO
In this Article, we present a series of novel laser-written liquid crystal (LC) devices for aberration control for applications in beam shaping or aberration correction through adaptive optics. Each transparent LC device can correct for a chosen aberration mode with continuous greyscale tuning up to a total magnitude of more than 2π radians phase difference peak to peak at a wavelength of λ = 660 nm. For the purpose of demonstration, we present five different devices for the correction of five independent Zernike polynomial modes (although the technique could readily be used to manufacture devices based on other modes). Each device is operated by a single electrode pair tuned between 0 and 10 V. These devices have potential as a low-cost alternative to spatial light modulators for applications where a low-order aberration correction is sufficient and transmissive geometries are required.
RESUMO
Effective light extraction from optically active solid-state spin centers inside high-index semiconductor host crystals is an important factor in integrating these pseudo-atomic centers in wider quantum systems. Here, we report increased fluorescent light collection efficiency from laser-written nitrogen-vacancy (NV) centers in bulk diamond facilitated by micro-transfer printed GaN solid immersion lenses. Both laser-writing of NV centers and transfer printing of micro-lens structures are compatible with high spatial resolution, enabling deterministic fabrication routes toward future scalable systems development. The micro-lenses are integrated in a noninvasive manner, as they are added on top of the unstructured diamond surface and bonded by van der Waals forces. For emitters at 5 µm depth, we find approximately 2× improvement of fluorescent light collection using an air objective with a numerical aperture of NA = 0.95 in good agreement with simulations. Similarly, the solid immersion lenses strongly enhance light collection when using an objective with NA = 0.5, significantly improving the signal-to-noise ratio of the NV center emission while maintaining the NV's quantum properties after integration.
RESUMO
We present dynamic time-resolved measurements of a multi-pixel analog liquid crystal phase modulator driven at a 1 kHz frame rate. A heterodyne interferometer is used to interrogate two pixels independently and simultaneously, to deconvolve phase modulation with a wide bandwidth. The root mean squared optical phase error within a 30 Hz to 25 kHz bandwidth is <0.5° and the crosstalk rejection is 50 dB. Measurements are shown for a custom-built device with a flexoelectro-optic chiral nematic liquid crystal. However, the technique is applicable to many different types of optical phase modulators and spatial light modulators.
RESUMO
Photonics integrated circuitry would benefit considerably from the ability to arbitrarily control waveguide cross-sections with high precision and low loss, in order to provide more degrees of freedom in manipulating propagating light. Here, we report a new method for femtosecond laser writing of optical-fiber-compatible glass waveguides, namely spherical phase-induced multicore waveguide (SPIM-WG), which addresses this challenging task with three-dimensional on-chip light control. Fabricating in the heating regime with high scanning speed, precise deformation of cross-sections is still achievable along the waveguide, with shapes and sizes finely controllable of high resolution in both horizontal and vertical transversal directions. We observed that these waveguides have high refractive index contrast of 0.017, low propagation loss of 0.14 dB/cm, and very low coupling loss of 0.19 dB coupled from a single-mode fiber. SPIM-WG devices were easily fabricated that were able to perform on-chip beam rotation through varying angles, or manipulate the polarization state of propagating light for target wavelengths. We also demonstrated SPIM-WG mode converters that provide arbitrary adiabatic mode conversion with high efficiency between symmetric and asymmetric nonuniform modes; examples include circular, elliptical modes, and asymmetric modes from ppKTP (periodically poled potassium titanyl phosphate) waveguides which are generally applied in frequency conversion and quantum light sources. Created inside optical glass, these waveguides and devices have the capability to operate across ultra-broad bands from visible to infrared wavelengths. The compatibility with optical fiber also paves the way toward packaged photonic integrated circuitry, which usually needs input and output fiber connections.
RESUMO
Phase aberrations are introduced when focusing by a high-numerical aperture (NA) objective lens into refractive-index-mismatched (RIM) media. The axial focus position in these media can be adjusted through either optical remote-focusing or mechanical stage translation. Despite the wide interest in remote-focusing, no generalised control algorithm using Zernike polynomials has been presented that performs independent remote-focusing and RIM correction in combination with mechanical stage translation. In this work, we thoroughly review derivations that model high-NA defocus and RIM aberration. We show through both numerical simulation and experimental results that optical remote-focusing using an adaptive device and mechanical stage translation are not optically equivalent processes, such that one cannot fully compensate for the other without additional aberration compensation. We further establish new orthogonal modes formulated using conventional Zernike modes and discuss its device programming to control high-NA remote-focusing and RIM correction as independent primary modes in combination with mechanical stage translation for aberration-free refocusing. Numerical simulations are performed, and control algorithms are validated experimentally by fabricating graphitic features in diamond using direct laser writing.
RESUMO
Sapphire optical fiber has the ability to withstand ultrahigh temperatures and high radiation, but it is multimoded which prevents its use in many sensing applications. Problematically, Bragg gratings in such fiber exhibit multiple reflection peaks with a fluctuating power distribution. In this work, we write single-mode waveguides with Bragg gratings in sapphire using a novel multi-layer depressed cladding design in the 1550 nm telecommunications waveband. The Bragg gratings have a narrow bandwidth (<0.5 nm) and have survived annealing at 1000°C. The structures are inscribed with femtosecond laser direct writing, using adaptive beam shaping with a non-immersion objective. A single-mode sapphire fiber Bragg grating is created by writing a waveguide with a Bragg grating within a 425 µm diameter sapphire optical fiber, providing significant potential for accurate remote sensing in ultra-extreme environments.
RESUMO
Femtosecond laser direct writing is widely used to create waveguide circuits for optical processing in applications including communications, astrophotonics, simulation and quantum information processing. The properties of these waveguide circuits can be sensitive to the fabrication conditions, meaning that noticeable variability can be present in nominally identical manufactured components. One potential solution to this problem is the use of device trimming, whereby additional laser fabrication is applied to optimise the optical properties of a device based upon measurement feedback. We show how this approach can be used in the manufacture of directional couplers by overwriting the laser-written structure to alter the coupling ratios.
RESUMO
Topological defects are a consequence of broken symmetry in ordered systems and are important for understanding a wide variety of phenomena in physics. In liquid crystals (LCs), defects exist as points of discontinuous order in the vector field that describes the average orientation of the molecules in space and are crucial for explaining the fundamental behaviour and properties of these mesophases. Recently, LC defects have also been explored from the perspective of technological applications including self-assembly of nanomaterials, optical-vortex generation and in tunable plasmonic metamaterials. Here, we demonstrate the fabrication and stabilisation of electrically-tunable defects in an LC device using two-photon polymerisation and explore the dynamic behaviour of defects when confined by polymer structures laser-written in topologically discontinuous states. We anticipate that our defect fabrication technique will enable the realisation of tunable, 3D, reconfigurable LC templates towards nanoparticle self-assembly, tunable metamaterials and next-generation spatial light modulators for light-shaping.
RESUMO
Rapid imaging of multiple focal planes without sample movement may be achieved through remote refocusing, where imaging is carried out in a plane conjugate to the sample plane. The technique is ideally suited to studying the endothelial and smooth muscle cell layers of blood vessels. These are intrinsically linked through rapid communication and must be separately imaged at a sufficiently high frame rate in order to understand this biologically crucial interaction. We have designed and implemented an epifluoresence-based remote refocussing imaging system that can image each layer at up to 20fps using different dyes and excitation light for each layer, without the requirement for optically sectioning microscopy. A novel triggering system is used to activate the appropriate laser and image acquisition at each plane of interest. Using this method, we are able to achieve axial plane separations down to 15 µ m, with a mean lateral stability of ≤ 0.32 µ m displacement using a 60x, 1.4NA imaging objective and a 60x, 0.7NA reimaging objective. The system allows us to image and quantify endothelial cell activity and smooth muscle cell activity at a high framerate with excellent lateral and good axial resolution without requiring complex beam scanning confocal microscopes, delivering a cost effective solution for imaging two planes rapidly. We have successfully imaged and analysed Ca 2 + activity of the endothelial cell layer independently of the smooth muscle layer for several minutes.
RESUMO
Adaptive optics are becoming a valuable tool for laser processing, providing enhanced functionality and flexibility for a range of systems. Using a single adaptive element, it is possible to correct for aberrations introduced when focusing inside the workpiece, tailor the focal intensity distribution for the particular fabrication task and/or provide parallelisation to reduce processing times. This is particularly promising for applications using ultrafast lasers for three-dimensional fabrication. We review recent developments in adaptive laser processing, including methods and applications, before discussing prospects for the future.
RESUMO
Single photon emitters in silicon carbide (SiC) are attracting attention as quantum photonic systems ( Awschalom et al. Nat. Photonics 2018 , 12 , 516 - 527 ; Atatüre et al. Nat. Rev. Mater. 2018 , 3 , 38 - 51 ). However, to achieve scalable devices, it is essential to generate single photon emitters at desired locations on demand. Here we report the controlled creation of single silicon vacancy (VSi) centers in 4H-SiC using laser writing without any postannealing process. Due to the aberration correction in the writing apparatus and the nonannealing process, we generate single VSi centers with yields up to 30%, located within about 80 nm of the desired position in the transverse plane. We also investigated the photophysics of the laser writing VSi centers and concluded that there are about 16 photons involved in the laser writing VSi center process. Our results represent a powerful tool in the fabrication of single VSi centers in SiC for quantum technologies and provide further insights into laser writing defects in dielectric materials.
RESUMO
We present fiber Bragg gratings (FBGs) fabricated using adaptive optics aberration compensation for the first time to the best of our knowledge. The FBGs are fabricated with a femtosecond laser by the point-by-point method using an air-based objective lens, removing the requirement for immersion oil or ferrules. We demonstrate a general phase correction strategy that can be used for accurate fabrication at any point in the fiber cross-section. We also demonstrate a beam-shaping approach that nullifies the aberration when focused inside a central fiber core. Both strategies give results which are in excellent agreement with coupled-mode theory. An extremely low wavelength polarization sensitivity of 4 pm is reported.
RESUMO
There is currently no widely adopted standard for the optical characterization of fluorescence microscopes. We used laser written fluorescence to generate two- and three-dimensional patterns to deliver a quick and quantitative measure of imaging performance. We report on the use of two laser written patterns to measure the lateral resolution, illumination uniformity, lens distortion and color plane alignment using confocal and structured illumination fluorescence microscopes.
RESUMO
The spectral dispersion of ultrashort pulses allows the simultaneous focusing of light in both space and time, which creates so-called spatiotemporal foci. Such space-time coupling may be combined with the existing holographic techniques to give a further dimension of control when generating focal light fields. In the present study, it is shown that a phase-only hologram placed in the pupil plane of an objective and illuminated by a spatially chirped ultrashort pulse can be used to generate three-dimensional arrays of spatio-temporally focused spots. By exploiting the pulse front tilt generated at focus when applying simultaneous spatial and temporal focusing (SSTF), it is possible to overlap neighboring foci in time to create a smooth intensity distribution. The resulting light field displays a high level of axial confinement, with experimental demonstrations given through two-photon microscopy and the non-linear laser fabrication of glass.
RESUMO
Photonic integrated circuits (PICs) written with an ultrashort pulsed laser provide advantages in a range of applications, such as photon-based quantum information processing, where low insertion loss and low polarization dependence are critical concerns. Here we demonstrate the inscription of hybrid waveguides in fused silica at a pulse repetition rate of 1MHz that fulfill both these criteria. The mechanisms for propagation and coupling losses are identified and decoupled, with separate sections of the waveguide minimizing for each and an adiabatic mode conversion between the two. Moreover, differing sources of birefringence were revealed to be non-parallel for the waveguides, such that structures can be designed where these competing sources cancel to remove any polarization dependence.
RESUMO
We present the results of our work on developing fully integrated devices (photonic dicers) for reformatting multimode light to a diffraction limited pseudo-slit. These devices can be used to couple a seeing limited telescope point spread function to a spectrograph operating at the diffraction limit, thus potentially enabling compact, high-resolution spectrographs that are free of modal noise.
RESUMO
Adaptive optics has been extensively studied for the correction of phase front aberrations in optical systems. In systems using ultrafast lasers, distortions can also exist in the pulse front (contour of constant intensity in space and time), but until now their correction has been mostly unexplored due to technological limitations. In this Letter, we apply newly developed pulse front adaptive optics, for the first time to our knowledge, to practical compensation of a two-photon fluorescence microscope. With adaptive correction of the system-induced pulse front distortion, improvements beyond conventional phase correction are demonstrated.
RESUMO
Ultrafast lasers enable a wide range of physics research and the manipulation of short pulses is a critical part of the ultrafast tool kit. Current methods of laser pulse shaping are usually considered separately in either the spatial or the temporal domain, but laser pulses are complex entities existing in four dimensions, so full freedom of manipulation requires advanced forms of spatiotemporal control. We demonstrate through a combination of adaptable diffractive and reflective optical elements - a liquid crystal spatial light modulator (SLM) and a deformable mirror (DM) - decoupled spatial control over the pulse front (temporal group delay) and phase front of an ultra-short pulse was enabled. Pulse front modulation was confirmed through autocorrelation measurements. This new adaptive optics technique, for the first time enabling in principle arbitrary shaping of the pulse front, promises to offer a further level of control for ultrafast lasers.