Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 23(4): 353-61, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17558734

RESUMO

Hyperthermia is a useful adjunct in cancer therapy as it can increase the effectiveness and decrease the toxicity of currently available cancer treatments such as chemotherapy and radiation. In the present study, we investigated whether 41 degrees C hyperthermia (mild HT) for 20 min can enhance macrosphelide (MS5)-induced apoptosis in human lymphoma U937 cells. Our results revealed that, compared with MS5 (5 microM) and mild HT alone, the combined treatment exhibited significant enhancement in apoptosis at 6 h, which was evaluated by observing morphological changes and DNA fragmentation. Marked increase in the reactive oxygen species (ROS) generation was observed immediately after the combined treatment. Significant increase in Fas externalization, caspase-8 and caspase-3 activation, and loss of mitochondrial membrane potential (MMP) was found after the combined treatment compared with MS5 and mild HT alone. Moreover, this combination can also alter the expression of apoptosis-related proteins as evident by the cleavage of Bid and down-regulation of Bcl-2 while no change in the expression of Bax was observed. Furthermore, an immediate rise in the intracellular calcium ion ([Ca(2+)]i) concentration was observed after the combined treatment, which continuously increased in a time-dependent manner. In addition, mild HT treatment alone also increases [Ca(2+)]i concentration without inducing apoptosis. Our data indicate that early increase in ROS generation is mainly responsible for the enhancement of apoptosis after the combined treatment.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose , Temperatura Alta , Hipertermia Induzida , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/efeitos da radiação , Cálcio/metabolismo , Cálcio/efeitos da radiação , Caspase 3/metabolismo , Caspase 3/efeitos da radiação , Caspase 8/metabolismo , Caspase 8/efeitos da radiação , Terapia Combinada , Regulação da Expressão Gênica/efeitos da radiação , Compostos Heterocíclicos/uso terapêutico , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Proteínas Proto-Oncogênicas c-bcl-2/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação , Fatores de Tempo , Células U937 , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/efeitos da radiação
2.
Neurosci Lett ; 307(3): 175-8, 2001 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-11438392

RESUMO

The role of dopamine (DA) on motor cortical pyramidal tract neurons (PTNs) was studied in anesthetized cats with in vivo extracellular recordings in response to transcallosal (TC) and ventrolateral (VL) thalamic stimulations. An antidromic PT potential was evoked to recognize PTNs. In most PTNs, iontophoretic application of DA significantly reduced the spike activity exerted by 20 single-pulse stimulations. Both D(1)-like and D(2)-like receptor antagonists blocked (disinhibited) the effect in a similar way regardless of TC and VL stimulations, suggesting colocalization of two receptors. Except for the presence of jittering, the mean latency was usually fixed and short. These findings indicate that ventral midbrain DA imposes an intense suppression in modulating PTNs response to both callosal and thalamocortical excitatory inputs in motor cortex. Such DAergic suppression could play pivotal role to improve motor and sensorimotor signal integration.


Assuntos
Dopamina/metabolismo , Córtex Motor/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Tratos Piramidais/metabolismo , Sinapses/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Gatos , Corpo Caloso/citologia , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/metabolismo , Dopamina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Córtex Motor/citologia , Córtex Motor/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Vias Neurais/citologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Tratos Piramidais/citologia , Tratos Piramidais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Núcleos Ventrais do Tálamo/citologia , Núcleos Ventrais do Tálamo/efeitos dos fármacos , Núcleos Ventrais do Tálamo/metabolismo
3.
Neurosci Res ; 33(1): 33-40, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10096469

RESUMO

The effects of dopamine (DA) and its antagonists on the transcallosal activity of pyramidal tract neurons (PTNs) and non-PTNs in the anesthetized cat motor cortex were studied with iontophoretic applications; dopamine, SCH 23390 (D1 antagonist), sulpiride (D2 antagonist) and haloperidol. Neuronal activity was recorded with a multi-barreled glass microelectrode. Transcallosal neuronal activity was evoked by stimulation of the contralateral motor cortex. The number of spikes thus activated was counted for the control and test conditions after application of each drug: (1) dopamine application decreased the number of spikes evoked by transcallosal stimulation; (2) application of SCH 23390, sulpiride and haloperidol restored these decreased spike numbers to the control level; (3) latency of neuronal response to transcallosal stimulation was not affected by the application of either DA, SCH 23390, sulpiride or haloperidol; and (4) there was no significant difference between PTNs and non-PTNs in the manner of response to DA and its antagonist applications. Our conclusion is that dopamine modulated the transcallosal neuronal response in the cat motor cortex in a suppressive manner. This fact suggested that interhemispheric neuronal communications could be subjected to suppressive modification by the dopaminergic system.


Assuntos
Corpo Caloso/fisiologia , Dopamina/farmacologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Benzazepinas/farmacologia , Gatos , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2 , Estimulação Elétrica , Haloperidol/farmacologia , Córtex Motor/citologia , Neurônios/efeitos dos fármacos , Tratos Piramidais/citologia , Tratos Piramidais/fisiologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores de Dopamina D1/antagonistas & inibidores , Sulpirida/farmacologia
4.
Gen Pharmacol ; 29(4): 523-30, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9352297

RESUMO

1. Modulatory effects of APGW-amide (Ala-Pro-Gly-Trp-NH2), proposed as an inhibitory neurotransmitter of Achatina neurons, perfused at 3 x 10(-6) M on the currents induced by small-molecule putative neurotransmitters were examined by using Achatina giant neuron types, v-RCDN (ventral-right cerebral distinct neuron), TAN (tonically autoactive neuron) and RAPN (right anterior pallial nerve neuron), under voltage clamp. These putative neurotransmitters were ejected locally to the neuron by brief pneumatic pressure. 2. Outward current (Iout) induced by erythro-beta-hydroxy-L-glutamic acid (erythro-L-BHGA) on v-RCDN, which was probably K+ dependent, was enhanced with membrane conductance (g) increase under APGW-amide. From dose (pressure duration)-response curves of erythro-L-BHGA measured in physiological solution (control curve) and with APGW-amide (drug curve), ED50 values of the two curves were nearly comparable, whereas Emax of the drug curve was significantly larger than that of the other. From a Lineweaver-Burk plot of these data, the cross point of the control line and the drug line was on the abscissa. 3. K(+)-dependent Iout caused by dopamine (DA) on v-RCDN was inhibited with a g increase by APGW-amide. The inhibition of this current caused by APGW-amide was mainly in a noncompetitive and partly uncompetitive manner. 4. 5-Hydroxytryptamine (5-HT) produced an inward current (Iin) with two (fast and slow) components on TAN, which was probably Na+ dependent. The fast component of the Iin was inhibited by APGW-amide. The inhibition was mainly in a noncompetitive manner. 5. The currents induced by acetylcholine, gamma-aminobutyric acid and L-glutamic acid on Achatina neuron types were not affected by APGW-amide. 6. The inhibitory effects of APGW-amide on the Iin (fast component) induced by 5-HT were nearly equipotent or a bit stronger than those on the Iout caused by DA. 7. The g increase produced by APGW-amide would be a cause for inhibiting the Iout induced by DA. In addition, we consider that APGW-amide affects intracellular signal transduction systems or ionic channels, thus modulating these currents.


Assuntos
Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Dopamina/farmacologia , Glutamatos/farmacologia , Técnicas In Vitro , Técnicas de Patch-Clamp , Serotonina/farmacologia , Caramujos
5.
Gen Pharmacol ; 29(4): 531-8, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9352298

RESUMO

1. Modulatory effects of APGW-amide (Ala-Pro-Gly-Trp-NH2), proposed as an inhibitory neurotransmitter of Achatina neurons, perfused at 3 x 10(-6) M on the currents induced by neuroactive peptides, ejected by brief pressure, were examined by using Achatina giant neuron types, v-RCDN (ventral-right cerebral distinct neuron) and PON (periodically oscillating neuron), under voltage clamp. 2. Outward current (Iout) caused by FMRFamide (Phe-Met-Arg-Phe-NH2) on v-RCDN, which was probably K+ dependent, was inhibited with membrane conductance (g) increase by APGW-amide. From the dose (pressure duration)-response curves of FMRFamide and a Lineweaver-Burk plot of these data, the inhibition caused by APGW-amide was mainly in an uncompetitive manner. 3. Iout caused by APGW-amide on v-RCDN, which was probably K+ dependent, was inhibited with g increase by APGW-amide. The inhibition caused by APGW-amide was partly in a competitive manner and partly in a noncompetitive manner. 4. Iout caused by [Ser2]-Mytilus inhibitory peptide, [Ser2]-MIP (Gly-Ser-Pro-Met-Phe-Val-NH2) on v-RCDN, which was probably K+ dependent, was inhibited with g increase by APGW-amide. Because the modulation of this current was not so marked, a dose-response study of this compound was not carried out. Iin induced by oxytocin on PON was not affected by APGW-amide. 5. From the dose-response curves of APGW-amide, perfused consecutively, the inhibitory effects of APGW-amide on the Iout caused by APGW-amide were stronger than those on the Iout caused by FMRFamide. 6. The inhibition of the APGW-amide-induced Iout on v-RCDN by APGW-amide was partly due to the competition in the receptor sites and partly to the g increase. The inhibition by APGW-amide on the Iout induced by FMRFamide and [Ser2]-MIP would be partly due to the g increase. In addition, we consider that APGW-amide affects intracellular signal transduction systems or ionic channels, thus modulating these currents. 7. The currents modulated by APGW-amide were different from those modulated by achatin-1, another Achatina endogenous neuroexcitatory peptide. We consider that the mechanisms underlying the modulatory effects of APGW-amide are different from those of achatin-I.


Assuntos
Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Neurotransmissores/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , FMRFamida/farmacologia , Técnicas In Vitro , Oligopeptídeos/farmacologia , Ocitocina/farmacologia , Técnicas de Patch-Clamp , Caramujos
6.
Eur J Pharmacol ; 304(1-3): 163-71, 1996 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-8813599

RESUMO

An Achatina endogenous tetrapeptide, achatin-I (Gly-D-Phe-Ala-Asp), applied by brief pressure, produced an inward current (Iin) on an Achatina giant neurone type, PON (periodically oscillating neurone). Promethazine, triprolidine and their analogues tested, applied by perfusion, showed a tendency to inhibit the Iin, suggesting that the effective structures vary to a wide extent. With respect to promethazine and its analogues, the presence of 2-bromo, 5-oxo, 3-dimethylsulfamido and 2-methoxy weakened the effects. 10-(2-methylamino-2-methylethyl) instead of 10-(2-dimethylamino-2-methylethyl) of promethazine and the azepine ring instead of phenothiazine ring potentiated the effects. From the dose (pressure duration)-response study of achatin-I, the two promethazine analogues, RP 6497 and RP 6549 (the structures are shown in Fig. 1), inhibited the Iin in partly competitive and partly noncompetitive manners. Regarding triprolidine and its analogues, the compounds in Z-configuration seemed to be more effective than those in E-configuration. The presence of 4-methyl in 1-phenyl, and 1-(4-pyridyl) instead of 1-(2-pyridyl) potentiated the effects. 3-Dimethylamino instead of 3-pyrrolidino weakened the effects. The two triprolidine analogues, Trip Der 3 and Trip Der 6 (the structures in Fig. 2), inhibited the Iin in an uncompetitive manner.


Assuntos
Condução Nervosa/efeitos dos fármacos , Neuropeptídeos/antagonistas & inibidores , Neurotransmissores/farmacologia , Prometazina/farmacologia , Triprolidina/farmacologia , Animais , Relação Dose-Resposta a Droga , Técnicas In Vitro , Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Neurotransmissores/antagonistas & inibidores , Técnicas de Patch-Clamp , Prometazina/análogos & derivados , Caramujos , Relação Estrutura-Atividade , Triprolidina/análogos & derivados
7.
Gen Pharmacol ; 27(1): 3-32, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8742492

RESUMO

1. An African giant snail (Achatina fulica Férussac), originally from East Africa, is now found abundantly in tropical and subtropical regions of Asia, including Okinawa in Japan. This is one of the largest land snail species in the world. The Achatina central nervous system is composed of the buccal, cerebral and suboesophageal ganglia. The 37 giant neurones were identified in these ganglia by the series of studies conducted over about 20 years. The identifications were made by the localization of these neurones in the ganglia, their axonal pathways and their pharmacological features. 2. In the left buccal ganglion, the four giant neurones, d-LBAN, d-LBMB, d-LBCN and d-LBPN, were identified. In the left and right cerebral ganglia, d-LCDN, d-RCDN, v-LCDN and v-RCDN were identified. The suboesophageal ganglia are further composed of the left and right parietal, the visceral, the left and right pleural, and the left and right pedal ganglia. In the right parietal ganglion, PON, TAN, TAN-2, TAN-3, RAPN, d-RPLN, BAPN, LPPN, LBPN, LAPN and v-RPLN were identified. In the visceral ganglion, VIN, FAN, INN, d-VLN, v-VLN, v-VAN, LVMN, RVMN and v-VNAN were identified. In the left parietal ganglion, v-LPSN was identified. In the left and right pedal ganglia, LPeNLN, RPeNLN, d-LPeLN, d-LPeCN, d-RPeAN, d-LPeDN, d-LPeMN and d-LPeEN were identified. 3. Of the small molecule compounds tested, dopamine, 5-hydroxytryptamine, GABA, L-glutamic acid, threo- or erythro-beta-hydroxy-L-glutamic acid were effective on the Achatina giant neurones. We suppose that these compounds act as the neurotransmitters for these neurones. 4. Of the neuroactive peptides, achatin-I(Gly-D-Phe-Ala-Asp). APGW-amide(Ala-Pro-Gly-Trp-NH2) and Achatina cardioexcitatory peptide (ACEP-1)(Ser-Gly-Gln-Ser-Trp-Arg-Pro-Gln-Gly-Arg-Phe-NH2) were proposed as neurotransmitters, because these were effective on the Achatina giant neurones and their presence was demonstrated in the Achatina ganglia. Further, myomodulin (Pro-Met-Ser-Met-Leu-Arg-Leu-NH2), buccalin (Gly-Met-Asp-Ser-Leu-Ala-Phe-Ser-Gly-Gly-Leu-NH2), FMRFamide (Phe-Met-Arg-Phe-NH2). [Ser2]-Mytilus inhibitory peptide ([Ser2]-MIP) (Gly-Ser-Pro-Met-Phe-Val-NH2), catch-relaxing peptide (CARP) (Ala-Met-Pro-Met-Leu-Arg-Leu-NH2), oxytocin (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2) and small cardioactive peptideB (SCPB) (Met-Asn-Tyr-Leu-Ala-Phe-Pro-Arg-Met-NH2) could also be neurotransmitters because these peptides were also effective on the Achatina giant neurones, though their presence in the ganglia of this animal has not yet been demonstrated. 5. Calcium current (ICa) was recorded from Achatina giant neurones in the Na(+)-free solution containing K(+)-channel blockers under voltage clamp. The Ca2+ antagonistic effects of brovincamine, verapamil, eperisone, diltiazem, monatepil, etc., were compared using the ICa of the Achatina neurones. 6. Almost all of the mammalian small molecule neurotransmitters were effective on the Achatina giant neurones, suggesting that these compounds are acting on the neurones of a wide variety of animal species. However, the pharmacological features of the Achatina neurone receptors to these compounds were not fully comparable to those of the mammalian receptors. For example, we proposed that beta-hydroxy-L-glutamic acid (either threo- or erythro-) could be an inhibitory neurotransmitter for an Achatina neurone. 7. In contrast, the Achatina giant neurones appear to have no receptor for the mammalian neuroactive peptides, except for oxytocin and Arg-vasotocin. On the other hand, many neuroactive peptides were isolated from invertebrate nervous tissues, including achatin-I, a neuroexcitatory tetrapeptide having a D-phenylalanine residue.


Assuntos
Gânglios dos Invertebrados/anatomia & histologia , Vias Neurais/anatomia & histologia , Vias Neurais/efeitos dos fármacos , Caramujos/anatomia & histologia , Animais , Encéfalo/anatomia & histologia , Canais de Cálcio/fisiologia , Di-Hidroxifenilalanina/farmacologia , Dopaminérgicos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , GABAérgicos/farmacologia , Gânglios dos Invertebrados/química , Gânglios dos Invertebrados/efeitos dos fármacos , Neuropeptídeos/farmacologia , Neurotransmissores/farmacologia
8.
Acta Biol Hung ; 46(2-4): 395-400, 1995.
Artigo em Inglês | MEDLINE | ID: mdl-8853710

RESUMO

Achatin-I (Gly-D-Phe-Ala-Asp), a tetrapeptide having a D-phenylalanine residue and isolated from Achatina ganglia, has been proposed as an excitatory neurotransmitter of Achatina neurones. In the present study, it was demonstrated using Achatina giant neurones that achetin-I, perfused at alow concentration, enhanced an inward current (Iin) caused by 5-hydroxytryptamine (fast component) and an outward current (Iout) caused by FMRFamide (Phe-Met-Arg-Phe-NH2), and that this peptide suppressed an Iin caused by oxytocin, and Iout caused by acetylcholine and APGW-amide (Ala-Pro-Gly-Trp-NH2). These findings indicate that achatin-I acts not only as a neurotransmitter but also as a neuromodulator for these neurones. In the preliminary experiments, it was shown that an Iin caused by achatin-I on an Achatina giant neurone type, PON (periodically oscillating neurone), was suppressed by H-89 (a PKA inhibitor) and W-7 (calmodulin inhibitor), and that an Iin caused by achatin-I on v-RCON (ventral-right cerebral distinct neurone) was suppressed by KT5823 (PKG inhibitor), suggesting that achatin-I acts on PON via the cyclic AMP-PKA system and on v-RCON via the cyclic GMP-PKG system. Moreover, calmodulin would play a role to produce the Iin for achatin-I on PON via the system mentioned.


Assuntos
Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neuropeptídeos/farmacologia , Neurotransmissores/farmacologia , Caramujos/fisiologia , Sequência de Aminoácidos , Animais , Calmodulina/fisiologia , Eletrofisiologia , FMRFamida , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/efeitos dos fármacos , Gânglios dos Invertebrados/fisiologia , Neuropeptídeos/química , Neuropeptídeos/fisiologia , Neurotransmissores/química , Neurotransmissores/fisiologia , Nucleotídeos Cíclicos/fisiologia , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Caramujos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA