Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(5): 109588, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38646171

RESUMO

The seasonal migrations of insects involve a substantial displacement of biomass with significant ecological and economic consequences for regions of departure and arrival. Remote sensors have played a pivotal role in revealing the magnitude and general direction of bioflows above 150 m. Nevertheless, the takeoff and descent activity of insects below this height is poorly understood. Our lidar observations elucidate the low-height dusk movements and detailed information of insects in southern Sweden from May to July, during the yearly northward migration period. Importantly, by filtering out moths from other insects based on optical information and wingbeat frequency, we have introduced a promising new method to monitor the flight activities of nocturnal moths near the ground, many of which participate in migration through the area. Lidar thus holds the potential to enhance the scientific understanding of insect migratory behavior and improve pest control strategies.

2.
Appl Spectrosc ; 77(6): 593-602, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37072925

RESUMO

We describe an entomological dual-band 808 and 980 nm lidar system which has been implemented in a tropical cloud forest (Ecuador). The system was successfully tested at a sample rate of 5 kHz in a cloud forest during challenging foggy conditions (extinction coefficients up to 20 km-1). At times, the backscattered signal could be retrieved from a distance of 2.929 km. We present insect and bat observations up to 200 m during a single night with an emphasis on fog aspects, potentials, and benefits of such dual-band systems. We demonstrate that the modulation contrast between insects and fog is high in the frequency domain compared to intensity in the time domain, thus allowing for better identification and quantification in misty forests. Oscillatory lidar extinction effects are shown in this work for the first time, caused by the combination of dense fog and large moths partially obstructing the beam. We demonstrate here an interesting case of a moth where left- and right-wing movements induced oscillations in both intensity and pixel spread. In addition, we were able to identify the dorsal and ventral sides of the wings by estimating the corresponding melanization with the dual-band lidar. We demonstrate that the wing beat trajectories in the dual-band parameter space are complementary rather than covarying or redundant, thus a dual-band entomological lidar approach to biodiversity studies is feasible in situ and endows species specificity differentiation. Future improvements are discussed. The introduction of these methodologies opens the door to a wealth of possible experiments to monitor, understand, and safeguard the biological resources of one of the most biodiverse countries on Earth.


Assuntos
Florestas , Insetos , Animais , Especificidade da Espécie
3.
Adv Sci (Weinh) ; 10(15): e2207110, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965063

RESUMO

Monitoring insects of different species to understand the factors affecting their diversity and decline is a major challenge. Laser remote sensing and spectroscopy offer promising novel solutions to this. Coherent scattering from thin wing membranes also known as wing interference patterns (WIPs) have recently been demonstrated to be species specific. The colors of WIPs arise due to unique fringy spectra, which can be retrieved over long distances. To demonstrate this, a new concept of infrared (950-1650 nm) hyperspectral lidar with 64 spectral bands based on a supercontinuum light source using ray-tracing and 3D printing is developed. A lidar with an unprecedented number of spectral channels, high signal-to-noise ratio, and spatio-temporal resolution enabling detection of free-flying insects and their wingbeats. As proof of principle, coherent scatter from a damselfly wing at 87 m distance without averaging (4 ms recording) is retrieved. The fringed signal properties are used to determine an effective wing membrane thickness of 1412 nm with ±4 nm precision matching laboratory recordings of the same wing. Similar signals from free flying insects (2 ms recording) are later recorded. The accuracy and the method's potential are discussed to discriminate species by capturing coherent features from free-flying insects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA