Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1360099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590640

RESUMO

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease characterized by the degeneration of motor neurons that leads to muscle wasting and atrophy. Epidemiological and experimental evidence suggests a causal relationship between ALS and physical activity (PA). However, the impact of PA on motor neuron loss and sarcopenia is still debated, probably because of the heterogeneity and intensities of the proposed exercises. With this study, we aimed to clarify the effect of intense endurance exercise on the onset and progression of ALS in the SOD1-G93A mouse model. Methods: We randomly selected four groups of twelve 35-day-old female mice. SOD1-G93A and WT mice underwent intense endurance training on a motorized treadmill for 8 weeks, 5 days a week. During the training, we measured muscle strength, weight, and motor skills and compared them with the corresponding sedentary groups to define the disease onset. At the end of the eighth week, we analyzed the skeletal muscle-motor neuron axis by histological and molecular techniques. Results: Intense endurance exercise anticipates the onset of the disease by 1 week (age of the onset: trained SOD1-G93A = 63.17 ± 2.25 days old; sedentary SOD1-G93A = 70.75 ± 2.45 days old). In SOD1-G93A mice, intense endurance exercise hastens the muscular switch to a more oxidative phenotype and worsens the denervation process by dismantling neuromuscular junctions in the tibialis anterior, enhancing the Wallerian degeneration in the sciatic nerve, and promoting motor neuron loss in the spinal cord. The training exacerbates neuroinflammation, causing immune cell infiltration in the sciatic nerve and a faster activation of astrocytes and microglia in the spinal cord. Conclusion: Intense endurance exercise, acting on skeletal muscles, worsens the pathological hallmarks of ALS, such as denervation and neuroinflammation, brings the onset forward, and accelerates the progression of the disease. Our findings show the potentiality of skeletal muscle as a target for both prognostic and therapeutic strategies; the preservation of skeletal muscle health by specific intervention could counteract the dying-back process and protect motor neurons from death. The physiological characteristics and accessibility of skeletal muscle further enhance its appeal as a therapeutic target.

2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542223

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is considered the prototype of motor neuron disease, characterized by motor neuron loss and muscle waste. A well-established pathogenic hallmark of ALS is mitochondrial failure, leading to bioenergetic deficits. So far, pharmacological interventions for the disease have proven ineffective. Trimetazidine (TMZ) is described as a metabolic modulator acting on different cellular pathways. Its efficacy in enhancing muscular and cardiovascular performance has been widely described, although its molecular target remains elusive. We addressed the molecular mechanisms underlying TMZ action on neuronal experimental paradigms. To this aim, we treated murine SOD1G93A-model-derived primary cultures of cortical and spinal enriched motor neurons, as well as a murine motor-neuron-like cell line overexpressing SOD1G93A, with TMZ. We first characterized the bioenergetic profile of the cell cultures, demonstrating significant mitochondrial dysfunction that is reversed by acute TMZ treatments. We then investigated the effect of TMZ in promoting autophagy processes and its impact on mitochondrial morphology. Finally, we demonstrated the effectiveness of TMZ in terms of the mitochondrial functionality of ALS-rpatient-derived peripheral blood mononuclear cells (PBMCs). In summary, our results emphasize the concept that targeting mitochondrial dysfunction may represent an effective therapeutic strategy for ALS. The findings demonstrate that TMZ enhances mitochondrial performance in motor neuron cells by activating autophagy processes, particularly mitophagy. Although further investigations are needed to elucidate the precise molecular pathways involved, these results hold critical implications for the development of more effective and specific derivatives of TMZ for ALS treatment.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Mitocondriais , Trimetazidina , Camundongos , Animais , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico , Camundongos Transgênicos , Leucócitos Mononucleares/metabolismo , Superóxido Dismutase/metabolismo , Autofagia , Modelos Animais de Doenças
3.
Mol Neurobiol ; 60(11): 6346-6361, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37450246

RESUMO

The TAR-DNA binding protein (TDP43) is a nuclear protein whose cytoplasmic inclusions are hallmarks of Amyotrophic Lateral Sclerosis (ALS). Acute stress in cells causes TDP43 mobilization to the cytoplasm and its aggregation through different routes. Although acute stress elicits a strong phenotype, is far from recapitulating the years-long aggregation process. We applied different chronic stress protocols and described TDP43 aggregation in a human neuroblastoma cell line by combining solubility assays, thioflavin-based microscopy and flow cytometry. This approach allowed us to detect, for the first time to our knowledge in vitro, the formation of 25 kDa C-terminal fragment of TDP43, a pathogenic hallmark of ALS. Our results indicate that chronic stress, compared to the more common acute stress paradigm, better recapitulates the cell biology of TDP43 proteinopathies. Moreover, we optimized a protocol for the detection of bona fide prions in living cells, suggesting that TDP43 may form amyloids as a stress response.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Humanos , Esclerose Lateral Amiotrófica/genética , Linhagem Celular , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neuroblastoma/metabolismo , Proteinopatias TDP-43/metabolismo
4.
Br J Pharmacol ; 180(15): 1949-1964, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36780920

RESUMO

BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) comprises a primary injury directly induced by impact, which progresses into a secondary injury leading to neuroinflammation, reactive astrogliosis, and cognitive and motor damage. To date, treatment of TBI consists solely of palliative therapies that do not prevent and/or limit the outcomes of secondary damage and only stabilize the deficits. The neurotrophin, nerve growth factor (NGF), delivered to the brain parenchyma following intranasal application, could be a useful means of limiting or improving the outcomes of the secondary injury, as suggested by pre-clinical and clinical data. EXPERIMENTAL APPROACH: We evaluated the effect of acute intranasal treatment of young (20-postnatal day) rats, with NGF in a TBI model (weight drop/close head), aggravated by hypoxic complications. Immediately after the trauma, rats were intranasally treated with human recombinant NGF (50 µg·kg-1 ), and motor behavioural test, morphometric and biochemical assays were carried out 24 h later. KEY RESULTS: Acute intranasal NGF prevented the onset of TBI-induced motor disabilities, and decreased reactive astrogliosis, microglial activation and IL-1ß content, which after TBI develops to the same extent in the impact zone and the hypothalamus. CONCLUSION AND IMPLICATIONS: Intranasal application of NGF was effective in decreasing the motor dysfunction and neuroinflammation in the brain of young rats in our model of TBI. This work forms an initial pre-clinical evaluation of the potential of early intranasal NGF treatment in preventing and limiting the disabling outcomes of TBI, a clinical condition that remains one of the unsolved problems of paediatric neurology.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Criança , Ratos , Humanos , Animais , Fator de Crescimento Neural , Doenças Neuroinflamatórias , Gliose , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas/tratamento farmacológico , Inflamação , Modelos Animais de Doenças
5.
Redox Biol ; 59: 102585, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36580805

RESUMO

N-acetylaspartate (NAA) is synthesized by the mitochondrial enzyme NAT8L, which uses acetyl-CoA and aspartate as substrates. These metabolites are fundamental for bioenergetics and anabolic requirements of highly proliferating cells, thus, NAT8L modulation may impinge on the metabolic reprogramming of cancer cells. Specifically, aspartate represents a limiting amino acid for nucleotide synthesis in cancer. Here, the expression of the NAT8L enzyme was modulated to verify how it impacts the metabolic adaptations and proliferative capacity of hepatocellular carcinoma. We demonstrated that NAT8L downregulation is associated with increased proliferation of hepatocellular carcinoma cells and immortalized hepatocytes. The overexpression of NAT8L instead decreased cell growth. The pro-tumoral effect of NAT8L silencing depended on glutamine oxidation and the rewiring of glucose metabolism. Mechanistically, NAT8L downregulation triggers aspartate outflow from mitochondria via the exporter SLC25A13 to promote glucose flux into the pentose phosphate pathway, boosting purine biosynthesis. These results were corroborated by the analyses of human and mouse hepatocellular carcinoma samples revealing a decrease in NAT8L expression compared to adjacent non-tumoral tissues. Overall, this work demonstrates that NAT8L expression in liver cells limits the cytosolic availability of aspartate necessary for enhancing the pentose phosphate pathway and purine biosynthesis, counteracting cell proliferation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/genética , Via de Pentose Fosfato , Ácido Aspártico/metabolismo , Neoplasias Hepáticas/genética , Proliferação de Células , Purinas , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Acetiltransferases/metabolismo
6.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142777

RESUMO

Mitochondria are central in the pathogenesis of Parkinson's disease (PD), as they are involved in oxidative stress, synaptopathy, and other immunometabolic pathways. Accordingly, they are emerging as a potential neuroprotection target, although further human-based evidence is needed for therapeutic advancements. This study aims to shape the pattern of mitochondrial respiration in the blood leukocytes of PD patients in relation to both clinical features and the profile of cerebrospinal fluid (CSF) biomarkers of neurodegeneration. Mitochondrial respirometry on the peripheral blood mononucleate cells (PBMCs) of 16 PD patients and 14 controls was conducted using Seahorse Bioscience technology. Bioenergetic parameters were correlated either with standard clinical scores for motor and non-motor disturbances or with CSF levels of α-synuclein, amyloid-ß peptides, and tau proteins. In PD, PBMC mitochondrial basal respiration was normal; maximal and spare respiratory capacities were both increased; and ATP production was higher, although not significantly. Maximal and spare respiratory capacity was directly correlated with disease duration, MDS-UPDRS part III and Hoehn and Yahr motor scores; spare respiratory capacity was correlated with the CSF amyloid-ß-42 to amyloid-ß-42/40 ratio. We provided preliminary evidence showing that mitochondrial respiratory activity increases in the PBMCs of PD patients, probably following the compensatory adaptations to disease progression, in contrast to the bases of the neuropathological substrate.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Trifosfato de Adenosina , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores , Humanos , Leucócitos Mononucleares/patologia , Mitocôndrias/patologia , Doença de Parkinson/patologia , Fragmentos de Peptídeos/líquido cefalorraquidiano , Respiração , alfa-Sinucleína/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
7.
Cell Death Dis ; 13(8): 737, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028501

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal disease caused by Lamin A mutation, leading to altered nuclear architecture, loss of peripheral heterochromatin and deregulated gene expression. HGPS patients eventually die by coronary artery disease and cardiovascular alterations. Yet, how deregulated transcriptional networks at the cellular level impact on the systemic disease phenotype is currently unclear. A genome-wide analysis of gene expression in cultures of primary HGPS fibroblasts identified SerpinE1, also known as Plasminogen Activator Inhibitor (PAI-1), as central gene that propels a cell-autonomous pathogenic signaling from the altered nuclear lamina. Indeed, siRNA-mediated downregulation and pharmacological inhibition of SerpinE1 by TM5441 could revert key pathological features of HGPS in patient-derived fibroblasts, including re-activation of cell cycle progression, reduced DNA damage signaling, decreased expression of pro-fibrotic genes and recovery of mitochondrial defects. These effects were accompanied by the correction of nuclear abnormalities. These data point to SerpinE1 as a novel potential effector and target for therapeutic interventions in HGPS pathogenesis.


Assuntos
Inibidor 1 de Ativador de Plasminogênio , Progéria , Núcleo Celular , Fibroblastos , Humanos , Lamina Tipo A , Inibidor 1 de Ativador de Plasminogênio/metabolismo
8.
EMBO Rep ; 23(6): e54721, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35383427

RESUMO

Pharmacological treatment of Duchenne muscular dystrophy (DMD) with histone deacetylase inhibitors (HDACi) is currently being tested in clinical trials; however, pre-clinical studies indicated that the beneficial effects of HDACi are restricted to early stages of disease. We show that FAPs from late-stage mdx mice exhibit aberrant HDAC activity and genome-wide alterations of histone acetylation that are not fully reversed by HDACi. In particular, combinatorial H3K27 and/or H3K9/14 hypo-acetylation at promoters of genes required for cell cycle activation and progression, as well as glycolysis, are associated with their downregulation in late-stage mdx FAPs. These alterations could not be reversed by HDACi, due to a general resistance to HDACi-induced H3K9/14 hyperacetylation. Conversely, H3K9/14 hyper-acetylation at promoters of Senescence Associated Secretory Phenotype (SASP) genes is associated with their upregulation in late-stage mdx FAPs; however, HDACi could reduce promoter acetylation and blunt SASP gene activation. These data reveal that during DMD progression FAPs develop disease-associated features reminiscent of cellular senescence, through epigenetically distinct and pharmacologically dissociable events. They also indicate that HDACi might retain anti-fibrotic effects at late stages of DMD.


Assuntos
Inibidores de Histona Desacetilases , Distrofia Muscular de Duchenne , Animais , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
9.
Metabolites ; 12(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35323676

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of the upper and lower motor neurons. Despite the increasing effort in understanding the etiopathology of ALS, it still remains an obscure disease, and no therapies are currently available to halt its progression. Following the discovery of the first gene associated with familial forms of ALS, Cu-Zn superoxide dismutase, it appeared evident that mitochondria were key elements in the onset of the pathology. However, as more and more ALS-related genes were discovered, the attention shifted from mitochondria impairment to other biological functions such as protein aggregation and RNA metabolism. In recent years, mitochondria have again earned central, mechanistic roles in the pathology, due to accumulating evidence of their derangement in ALS animal models and patients, often resulting in the dysregulation of the energetic metabolism. In this review, we first provide an update of the last lustrum on the molecular mechanisms by which the most well-known ALS-related proteins affect mitochondrial functions and cellular bioenergetics. Next, we focus on evidence gathered from human specimens and advance the concept of a cellular-specific mitochondrial "metabolic threshold", which may appear pivotal in ALS pathogenesis.

10.
Data Brief ; 41: 107843, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35128003

RESUMO

In this article, we present data on the proteome of human neuroblastoma cells stably overexpressing Neuroglobin (NGB). The neuroprotective role of NGB is clearly established, nevertheless the related mechanistic processes, which are dependent on NGB overexpression, are not known. To address this question, we performed shotgun label-free quantification (LFQ) proteomics using an SH-SY5Y cell model of neuroblastoma that overexpresses an NGB-FLAG construct, and wild type cells transfected with an empty vector as control (CTRL). The proteomes from six biological samples per condition were digested using the S-Trap sample preparation followed by LC-MS/MS analysis with a LTQ-Orbitrap XL mass spectrometer. The quantitative analysis was performed using the LFQ algorithm of MaxQuant, leading to 1654 correctly quantified proteins over 2580 identified proteins. Finally, the statistic comparison of the two analyzed groups within Perseus platform identified 178 differential proteins (107 up- and 71 down-regulated). In addition, multivariate statistical analysis was carried out using MetaboAnalyst 5.0 software. MS proteomics data are available via ProteomeXchange with the dataset identifier PXD029012.

11.
Br J Pharmacol ; 179(8): 1732-1752, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34783031

RESUMO

BACKGROUND AND PURPOSE: Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by the degeneration of upper and lower motor neurons, progressive wasting and paralysis of voluntary muscles and is currently incurable. Although considered to be a pure motor neuron disease, increasing evidence indicates that the sole protection of motor neurons by a single targeted drug is not sufficient to improve the pathological phenotype. We therefore evaluated the therapeutic potential of the multi-target drug used to treatment of coronary artery disease, trimetazidine, in SOD1G93A mice. EXPERIMENTAL APPROACH: As a metabolic modulator, trimetazidine improves glucose metabolism. Furthermore, trimetazidine enhances mitochondrial metabolism and promotes nerve regeneration, exerting an anti-inflammatory and antioxidant effect. We orally treated SOD1G93A mice with trimetazidine, solubilized in drinking water at a dose of 20 mg kg-1 , from disease onset. We assessed the impact of trimetazidine on disease progression by studying metabolic parameters, grip strength and histological alterations in skeletal muscle, peripheral nerves and the spinal cord. KEY RESULTS: Trimetazidine administration delays motor function decline, improves muscle performance and metabolism, and significantly extends overall survival of SOD1G93A mice (increased median survival of 16 days and 12.5 days for male and female respectively). Moreover, trimetazidine prevents the degeneration of neuromuscular junctions, attenuates motor neuron loss and reduces neuroinflammation in the spinal cord and in peripheral nerves. CONCLUSION AND IMPLICATIONS: In SOD1G93A mice, therapeutic effect of trimetazidine is underpinned by its action on mitochondrial function in skeletal muscle and spinal cord.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Trimetazidina , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico
12.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943907

RESUMO

Neuroglobin (NGB) is an O2-binding globin mainly expressed in the central and peripheral nervous systems and cerebrospinal fluid. Previously, it was demonstrated that NGB overexpression protects cells from hypoxia-induced death. To investigate processes promoted by NGB overexpression, we used a cellular model of neuroblastoma stably overexpressing an NGB-FLAG construct. We used a proteomic approach to identify the specific profile following NGB overexpression. To evaluate the role of NGB overexpression in increasing energetic metabolism, we measured oxygen consumption rate (OCR) and the extracellular acidification rate through Seahorse XF technology. The effect on autophagy induction was evaluated by analyzing SQSTM1/p62 and LC3-II expression. Proteomic analysis revealed several differentially regulated proteins, involved in oxidative phosphorylation and integral mitochondrial proteins linked to energy metabolism. The analysis of mitochondrial metabolism demonstrated that NGB overexpression increases mitochondrial ATP production. Indeed, NGB overexpression enhances bioenergetic metabolism, increasing OCR and oxygen consumption. Analysis of autophagy induction revealed an increase of LC3-II together with a significant decrease of SQSTM1/p62, and NGB-LC3-II association during autophagosome formation. These results highlight the active participation of NGB in several cellular processes that can be upregulated in response to NGB overexpression, playing a role in the adaptive response to stress in neuroblastoma cells.


Assuntos
Autofagia/genética , Proteínas Associadas aos Microtúbulos/genética , Neuroblastoma/genética , Neuroglobina/genética , Proteína Sequestossoma-1/genética , Trifosfato de Adenosina/genética , Linhagem Celular Tumoral , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mitocôndrias/genética , Neuroblastoma/patologia , Consumo de Oxigênio/genética , Proteoma/genética
13.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199513

RESUMO

Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable ß-sheet enriched intermediates, which are stabilized by intermolecular interactions with other ß-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.


Assuntos
Doenças Neurodegenerativas/genética , Agregados Proteicos/genética , Agregação Patológica de Proteínas/genética , Conformação Proteica em Folha beta , Amiloide/genética , Amiloide/ultraestrutura , Humanos , Proteínas Intrinsicamente Desordenadas , Doenças Neurodegenerativas/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestrutura , Proteínas tau/genética , Proteínas tau/ultraestrutura
14.
Cells ; 10(3)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801336

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the selective degeneration of upper and lower motor neurons and by the progressive weakness and paralysis of voluntary muscles. Despite intense research efforts and numerous clinical trials, it is still an incurable disease. ALS had long been considered a pure motor neuron disease; however, recent studies have shown that motor neuron protection is not sufficient to prevent the course of the disease since the dismantlement of neuromuscular junctions occurs before motor neuron degeneration. Skeletal muscle alterations have been described in the early stages of the disease, and they seem to be mainly involved in the "dying back" phenomenon of motor neurons and metabolic dysfunctions. In recent years, skeletal muscles have been considered crucial not only for the etiology of ALS but also for its treatment. Here, we review clinical and preclinical studies that targeted skeletal muscles and discuss the different approaches, including pharmacological interventions, supplements or diets, genetic modifications, and training programs.


Assuntos
Esclerose Lateral Amiotrófica/complicações , Músculo Esquelético/fisiopatologia , Humanos
15.
Redox Biol ; 36: 101633, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32863211

RESUMO

Low-protein/high-carbohydrate (LPHC) diet has been suggested to promote metabolic health and longevity in adult humans and animal models. However, the complex molecular underpinnings of how LPHC diet leads to metabolic benefits remain elusive. Through a multi-layered approach, here we observed that LPHC diet promotes an energy-dissipating response consisting in the parallel recruitment of canonical and non-canonical (muscular) thermogenic systems in subcutaneous white adipose tissue (sWAT). In particular, we measured Ucp1 induction in association with up-regulation of actomyosin components and several Serca (Serca1, Serca2a, Serca2b) ATPases. In beige adipocytes, we observed that AMPK activation is responsible for transducing the amino acid lowering in an enhanced fat catabolism, which sustains both Ucp1-and Serca-dependent energy dissipation. Limiting AMPK activation counteracts the expression of brown fat and muscular genes, including Ucp1 and Serca, as well as mitochondrial oxidative genes. We observed that mitochondrial reactive oxygen species are the upstream molecules controlling AMPK-mediated metabolic rewiring in amino acid-restricted beige adipocytes. Our findings delineate a novel metabolic phenotype of responses to amino acid shortage, which recapitulates some of the benefits of cool temperature in sWAT. In conclusion, this highlights LPHC diet as a valuable and practicable strategy to prevent metabolic diseases through the enhancement of mitochondrial oxidative metabolism and the recruitment of different energy dissipating routes in beige adipocytes.


Assuntos
Proteínas Quinases Ativadas por AMP , Termogênese , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Carboidratos , Dieta , Metabolismo Energético , Humanos , Gordura Subcutânea/metabolismo
16.
iScience ; 23(5): 101087, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32371370

RESUMO

Patients with ALS show, in addition to the loss of motor neurons in the spinal cord, brainstem, and cerebral cortex, an abnormal depletion of energy stores alongside hypermetabolism. In this study, we show that bioenergetic defects and muscle remodeling occur in skeletal muscle of the SOD1G93A mouse model of ALS mice prior to disease onset and before the activation of muscle denervation markers, respectively. These changes in muscle physiology were followed by an increase in energy expenditure unrelated to physical activity. Finally, chronic treatment of SOD1G93A mice with Ranolazine, an FDA-approved inhibitor of fatty acid ß-oxidation, led to a decrease in energy expenditure in symptomatic SOD1G93A mice, and this occurred in parallel with a robust, albeit temporary, recovery of the pathological phenotype.

17.
Life Sci Alliance ; 3(3)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32019766

RESUMO

In Duchenne muscular dystrophy (DMD), the absence of the dystrophin protein causes a variety of poorly understood secondary effects. Notably, muscle fibers of dystrophic individuals are characterized by mitochondrial dysfunctions, as revealed by a reduced ATP production rate and by defective oxidative phosphorylation. Here, we show that in a mouse model of DMD (mdx), fibro/adipogenic progenitors (FAPs) are characterized by a dysfunctional mitochondrial metabolism which correlates with increased adipogenic potential. Using high-sensitivity mass spectrometry-based proteomics, we report that a short-term high-fat diet (HFD) reprograms dystrophic FAP metabolism in vivo. By combining our proteomic dataset with a literature-derived signaling network, we revealed that HFD modulates the ß-catenin-follistatin axis. These changes are accompanied by significant amelioration of the histological phenotype in dystrophic mice. Transplantation of purified FAPs from HFD-fed mice into the muscles of dystrophic recipients demonstrates that modulation of FAP metabolism can be functional to ameliorate the dystrophic phenotype. Our study supports metabolic reprogramming of muscle interstitial progenitor cells as a novel approach to alleviate some of the adverse outcomes of DMD.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Regeneração/fisiologia , Adipogenia/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Distrofina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Mioblastos/metabolismo , Proteômica , Transdução de Sinais , Células-Tronco/metabolismo
18.
Brain Pathol ; 30(2): 272-282, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31376190

RESUMO

Muscle weakness plays an important role in neuromuscular disorders comprising amyotrophic lateral sclerosis (ALS). However, it is not established whether muscle denervation originates from the motor neurons, the muscles or more likely both. Previous studies have shown that the expression of the SOD1G93A mutation in skeletal muscles causes denervation of the neuromuscular junctions, inability to regenerate and consequent atrophy, all clear symptoms of ALS. In this work, we used SOD1G93A mice, a model that best mimics some pathological features of both familial and sporadic ALS, and we investigated some biological effects induced by the activation of the P2X7 receptor in the skeletal muscles. The P2X7, belonging to the ionotropic family of purinergic receptors for extracellular ATP, is abundantly expressed in the healthy skeletal muscles, where it controls cell duplication, differentiation, regeneration or death. In particular, we evaluated whether an in vivo treatment in SOD1G93A mice with the P2X7 specific agonist 2'(3')-O-(4-Benzoylbenzoyl) adenosine5'-triphosphate (BzATP) just before the onset of a pathological neuromuscular phenotype could exert beneficial effects in the skeletal muscles. Our findings indicate that stimulation of P2X7 improves the innervation and metabolism of myofibers, moreover elicits the proliferation/differentiation of satellite cells, thus preventing the denervation atrophy of skeletal muscles in SOD1G93A mice. Overall, this study suggests that a P2X7-targeted and site-specific modulation might be a strategy to interfere with the complex multifactorial and multisystem nature of ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Junção Neuromuscular/patologia , Regeneração , Superóxido Dismutase/genética
19.
Mol Oncol ; 13(10): 2142-2159, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31361391

RESUMO

Persistent activation of Signal Transducer and Activator of Transcription (STAT)3 occurs in a high percentage of tumors, including colorectal cancer (CRC), thereby contributing to malignant cell proliferation and survival. Although STAT3 is recognized as an attractive therapeutic target in CRC, conventional approaches aimed at inhibiting its functions have met with several limitations. Moreover, the factors that sustain hyper-activation of STAT3 in CRC are not yet fully understood. The identification of tumor-specific STAT3 cofactors may facilitate the development of compounds that interfere exclusively with STAT3 activity in cancer cells. Here, we show that progranulin, a STAT3 cofactor, is upregulated in human CRC as compared to nontumor tissue/cells and its expression correlates with STAT3 activation. Progranulin physically interacts with STAT3 in CRC cells, and its knockdown with a specific antisense oligonucleotide (ASO) inhibits STAT3 activation and restrains the expression of STAT3-related oncogenic proteins, thus causing cell cycle arrest and apoptosis. Moreover, progranulin knockdown reduces STAT3 phosphorylation and cell proliferation induced by tumor-infiltrating leukocyte (TIL)-derived supernatants in CRC cell lines and human CRC explants. These findings indicate that CRC exhibits overexpression of progranulin, and suggest a role for this protein in amplifying the STAT3 pathway in CRC.


Assuntos
Neoplasias Colorretais/metabolismo , Progranulinas/metabolismo , Mapas de Interação de Proteínas , Fator de Transcrição STAT3/metabolismo , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Progranulinas/genética
20.
J Cachexia Sarcopenia Muscle ; 10(4): 872-893, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020811

RESUMO

BACKGROUND: Histamine is an immune modulator, neuroprotective, and remyelinating agent, beneficially acting on skeletal muscles and promoting anti-inflammatory features in amyotrophic lateral sclerosis (ALS) microglia. Drugs potentiating the endogenous release of histamine are in trial for neurological diseases, with a role not systematically investigated in ALS. Here, we examine histamine pathway associations in ALS patients and the efficacy of a histamine-mediated therapeutic strategy in ALS mice. METHODS: We adopted an integrative multi-omics approach combining gene expression profiles, copy number variants, and single nucleotide polymorphisms of ALS patients. We treated superoxide dismutase 1 (SOD1)-G93A mice that recapitulate key ALS features, with the brain-permeable histamine precursor histidine in the symptomatic phase of the disease and analysed the rescue from disease pathological signs. We examined the action of histamine in cultured SOD1-G93A motor neuron-like cells. RESULTS: We identified 13 histamine-related genes deregulated in the spinal cord of two ALS patient subgroups, among which genes involved in histamine metabolism, receptors, transport, and secretion. Some histamine-related genes overlapped with genomic regions disrupted by DNA copy number and with ALS-linked pathogenic variants. Histidine treatment in SOD1-G93A mice proved broad efficacy in ameliorating ALS features, among which most importantly lifespan, motor performance, microgliosis, muscle atrophy, and motor neurons survival in vivo and in vitro. CONCLUSIONS: Our gene set/pathway enrichment analyses and preclinical studies started at the onset of symptoms establish that histamine-related genes are modifiers in ALS, supporting their role as candidate biomarkers and therapeutic targets. We disclose a novel important role for histamine in the characterization of the multi-gene network responsible for ALS and, furthermore, in the drug development process.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Expressão Gênica/genética , Histamina/uso terapêutico , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Histamina/farmacologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA