Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 4(4): 100728, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38492569

RESUMO

Chimeric antigen receptor (CAR) T cells have shown remarkable response rates in hematological malignancies. In contrast, CAR T cell treatment of solid tumors is associated with several challenges, in particular the expression of most tumor-associated antigens at lower levels in vital organs, resulting in on-target/off-tumor toxicities. Thus, innovative approaches to improve the tumor specificity of CAR T cells are urgently needed. Based on the observation that many human solid tumors activate epidermal growth factor receptor (EGFR) on their surface through secretion of EGFR ligands, we developed an engineering strategy for CAR-binding domains specifically directed against the ligand-activated conformation of EGFR. We show, in several experimental systems, that the generated binding domains indeed enable CAR T cells to distinguish between active and inactive EGFR. We anticipate that this engineering concept will be an important step forward to improve the tumor specificity of CAR T cells directed against EGFR-positive solid cancers.


Assuntos
Receptores ErbB , Receptores de Antígenos Quiméricos , Linfócitos T , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos , Animais , Neoplasias/imunologia , Neoplasias/terapia , Linhagem Celular Tumoral , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Camundongos
2.
Nat Commun ; 14(1): 7804, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016944

RESUMO

Interactions of membrane-resident proteins are important targets for therapeutic interventions but most methods to study them are either costly, laborious or fail to reflect the physiologic interaction of membrane resident proteins in trans. Here we describe highly sensitive cellular biosensors as a tool to study receptor-ligand pairs. They consist of fluorescent reporter cells that express chimeric receptors harboring ectodomains of cell surface molecules and intracellular signaling domains. We show that a broad range of molecules can be integrated into this platform and we demonstrate its applicability to highly relevant research areas, including the characterization of immune checkpoints and the probing of cells for the presence of receptors or ligands. The platform is suitable to evaluate the interactions of viral proteins with host receptors and to test for neutralization capability of drugs or biological samples. Our results indicate that cellular biosensors have broad utility as a tool to study protein-interactions.


Assuntos
Técnicas Biossensoriais , Transdução de Sinais , Ligantes , Membrana Celular/metabolismo , Ligação Proteica , Proteínas de Membrana/metabolismo
3.
Sci Signal ; 16(805): eadg2610, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788323

RESUMO

Lymphocyte activation gene 3 (LAG3) is an inhibitory immune checkpoint receptor that restrains autoimmune and antitumor responses, but its evolutionarily conserved cytoplasmic tail lacks classical inhibitory motifs. Major histocompatibility complex class II (MHC class II) is an established LAG3 ligand, and fibrinogen-like protein 1 (FGL1), lymph node sinusoidal endothelial cell C-type lectin (LSECtin), and Galectin-3 have been proposed as alternative binding partners that play important roles in LAG3 function. Here, we used a fluorescent human T cell reporter system to study the function of LAG3. We found that LAG3 reduced the response to T cell receptor stimulation in the presence of MHC class II molecules to a lesser extent compared with the receptor programmed cell death protein 1. Analysis of deletion mutants demonstrated that the RRFSALE motif in the cytoplasmic tail of LAG3 was necessary and sufficient for LAG3-mediated inhibition. In this system, FGL1, but not LSECtin or Galectin-3, acted as a LAG3 ligand that weakly induced inhibition. LAG3-blocking antibodies attenuated LAG3-mediated inhibition in our reporter cells and enhanced reporter cell activation even in the absence of LAG3 ligands, indicating that they could potentially enhance T cell responses independently of their blocking effect.


Assuntos
Antígenos CD , Proteína do Gene 3 de Ativação de Linfócitos , Receptores de Antígenos de Linfócitos T , Humanos , Antígenos CD/genética , Antígenos CD/metabolismo , Fibrinogênio , Galectina 3 , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Ligantes , Receptores de Antígenos de Linfócitos T/genética , Receptores Imunológicos
4.
Proc Natl Acad Sci U S A ; 120(2): e2216352120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598945

RESUMO

Chimeric antigen receptors (CARs) can redirect T cells to target abnormal cells, but their activity is limited by a profound defect in antigen sensitivity, the source of which remains unclear. Here, we show that CARs have a > 100-fold lower antigen sensitivity compared to the T cell receptor (TCR) when antigen is presented on antigen-presenting cells (APCs) but nearly identical sensitivity when antigen is presented as purified protein. We next systematically measured the impact of engaging important T cell accessory receptors (CD2, LFA-1, CD28, CD27, and 4-1BB) on antigen sensitivity by adding their purified ligands. Unexpectedly, we found that engaging CD2 or LFA-1 improved the antigen sensitivity of the TCR by 125- and 22-fold, respectively, but improved CAR sensitivity by only < 5-fold. This differential effect of CD2 and LFA-1 engagement on the TCR vs. CAR was confirmed using APCs. We found that sensitivity to antigen can be partially restored by fusing the CAR variable domains to the TCR CD3ε subunit (also known as a TRuC) and fully restored by exchanging the TCRαß variable domains for those of the CAR (also known as STAR or HIT). Importantly, these improvements in TRuC and STAR/HIT sensitivity can be predicted by their enhanced ability to exploit CD2 and LFA-1. These findings demonstrate that the CAR sensitivity defect is a result of their inefficient exploitation of accessory receptors and suggest approaches to increase sensitivity.


Assuntos
Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Antígeno-1 Associado à Função Linfocitária , Ativação Linfocitária , Linfócitos T , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos CD28/metabolismo
5.
Methods Cell Biol ; 167: 133-147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35152991

RESUMO

Engineered chimeric antigen receptor T cells (CAR T cells) have emerged as a promising immunotherapy for cancer and have proven to be effective for B cell malignancies. Currently, great efforts are undertaken to expand the application of CAR T cells to other cancer entities, to increase the efficacy of CAR T cell-mediated killing of cancer cells and to reduce possible side effects of CAR T cell therapy. This creates a need for preclinical models to test the many emerging novel CAR designs. Traditionally, mouse xenograft models are applied to investigate the efficacy of CAR T cells in vivo. Here, we describe a complementing xenograft protocol for testing CAR T cells against human leukemia cells in zebrafish embryos. The embryonic zebrafish xenograft promises to be a fast and cost-efficient model and particularly offers live imaging opportunities of CAR T cell distribution and killing of cancer cells in vivo.


Assuntos
Receptores de Antígenos Quiméricos , Peixe-Zebra , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T
6.
Cancer Cell ; 40(1): 53-69.e9, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34971569

RESUMO

Pediatric cancers often mimic fetal tissues and express proteins normally silenced postnatally that could serve as immune targets. We developed T cells expressing chimeric antigen receptors (CARs) targeting glypican-2 (GPC2), a fetal antigen expressed on neuroblastoma (NB) and several other solid tumors. CARs engineered using standard designs control NBs with transgenic GPC2 overexpression, but not those expressing clinically relevant GPC2 site density (∼5,000 molecules/cell, range 1-6 × 103). Iterative engineering of transmembrane (TM) and co-stimulatory domains plus overexpression of c-Jun lowered the GPC2-CAR antigen density threshold, enabling potent and durable eradication of NBs expressing clinically relevant GPC2 antigen density, without toxicity. These studies highlight the critical interplay between CAR design and antigen density threshold, demonstrate potent efficacy and safety of a lead GPC2-CAR candidate suitable for clinical testing, and credential oncofetal antigens as a promising class of targets for CAR T cell therapy of solid tumors.


Assuntos
Glipicanas/imunologia , Imunoterapia Adotiva , Neuroblastoma/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Glipicanas/metabolismo , Humanos , Imunoterapia/métodos , Neuroblastoma/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
7.
Front Immunol ; 13: 1004703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36700229

RESUMO

Background: Chimeric antigen receptor T (CART) cell therapy targeting the B cell specific differentiation antigen CD19 has shown clinical efficacy in a subset of relapsed/refractory (r/r) diffuse large B cell lymphoma (DLBCL) patients. Despite this heterogeneous response, blood pre-infusion biomarkers predicting responsiveness to CART cell therapy are currently understudied. Methods: Blood cell and serum markers, along with clinical data of DLBCL patients who were scheduled for CART cell therapy were evaluated to search for biomarkers predicting CART cell responsiveness. Findings: Compared to healthy controls (n=24), DLBCL patients (n=33) showed significant lymphopenia, due to low CD3+CD4+ T helper and CD3-CD56+ NK cell counts, while cytotoxic CD3+CD8+ T cell counts were similar. Although lymphopenic, DLBCL patients had significantly more activated HLA-DR+ (P=0.005) blood T cells and a higher frequency of differentiated CD3+CD27-CD28- (28.7 ± 19.0% versus 6.6 ± 5.8%; P<0.001) T cells. Twenty-six patients were infused with CART cells (median 81 days after leukapheresis) and were analyzed for the overall response (OR) 3 months later. Univariate and multivariate regression analyses showed that low levels of differentiated CD3+CD27-CD28- T cells (23.3 ± 19.3% versus 35.1 ± 18.0%) were independently associated with OR. This association was even more pronounced when patients were stratified for complete remission (CR versus non-CR: 13.7 ± 11.7% versus 37.7 ± 17.4%, P=0.001). A cut-off value of ≤ 18% of CD3+CD27-CD28- T cells predicted CR at 12 months with high accuracy (P<0.001). In vitro, CD3+CD8+CD27-CD28- compared to CD3+CD8+CD27+CD28+ CART cells displayed similar CD19+ target cell-specific cytotoxicity, but were hypoproliferative and produced less cytotoxic cytokines (IFN-γ and TNF-α). CD3+CD8+ T cells outperformed CD3+CD4+ T cells 3- to 6-fold in terms of their ability to kill CD19+ target cells. Interpretation: Low frequency of differentiated CD3+CD27-CD28- T cells at leukapheresis represents a novel pre-infusion blood biomarker predicting a favorable response to CART cell treatment in r/r DLBCL patients.


Assuntos
Antígenos CD28 , Linfoma Difuso de Grandes Células B , Humanos , Linfócitos T CD8-Positivos , Diferenciação Celular , Antígenos CD19 , Linfoma Difuso de Grandes Células B/terapia , Terapia Baseada em Transplante de Células e Tecidos
8.
ACS Synth Biol ; 10(5): 1184-1198, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33843201

RESUMO

CD19 is among the most relevant targets in cancer immunotherapy. However, its extracellular domain (ECD) is prone to aggregation and misfolding, representing a major obstacle for the development and analysis of CD19-targeted therapeutics. Here, we engineered stabilized CD19-ECD (termed SuperFolder) variants, which also showed improved expression rates and, in contrast to the wild type protein, they could be efficiently purified in their monomeric forms. Despite being considerably more stable, these engineered mutants largely preserved the wild type sequence (>98.8%). We demonstrate that the variant SF05 enabled the determination of the monovalent affinity between CD19 and a clinically approved FMC63-based CAR, as well as monitoring and phenotypic characterization of CD19-directed CAR-T cells in the blood of lymphoma patients. We anticipate that the SuperFolder mutants generated in this study will be highly valuable tools for a range of applications in basic immunology and CD19-targeted cancer immunotherapy.


Assuntos
Substituição de Aminoácidos , Antígenos CD19/genética , Evolução Molecular Direcionada/métodos , Imunoterapia Adotiva/métodos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/terapia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Sequência de Aminoácidos , Aminoácidos/genética , Anticorpos Monoclonais/imunologia , Antígenos CD19/química , Antígenos CD19/imunologia , Células HEK293 , Humanos , Linfoma Difuso de Grandes Células B/sangue , Proteínas Mutantes , Mutação , Domínios Proteicos/imunologia , Dobramento de Proteína , Estabilidade Proteica , Receptores de Antígenos Quiméricos/genética
9.
FEBS J ; 288(7): 2103-2118, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32794303

RESUMO

T cells that are genetically engineered to express chimeric antigen receptors (CAR T cells) have shown impressive clinical efficacy against B-cell malignancies. In contrast to these highly potent CD19-targeting CAR T cells, many of those directed against other tumor entities and antigens currently suffer from several limitations. For example, it has been demonstrated that many scFvs used as antigen-binding domains in CARs show some degree of oligomerization, which leads to tonic signaling, T cell exhaustion, and poor performance in vivo. Therefore, in many cases alternatives to scFvs would be beneficial. Fortunately, due to the development of powerful protein engineering technologies, also non-immunoglobulin-based scaffolds can be engineered to specifically recognize antigens, thus eliminating the historical dependence on antibody-based binding domains. Here, we discuss the advantages and disadvantages of such engineered binding scaffolds, in particular with respect to their application in CARs. We review recent studies, collectively showing that there is no functional or biochemical aspect that necessitates the use of scFvs in CARs. Instead, antigen recognition can also be mediated efficiently by engineered binding scaffolds, as well as natural ligands or receptors fused to the CAR backbone. Finally, we critically discuss the risk of immunogenicity and show that the extent of nonhuman amino acid stretches in engineered scaffolds-even in those based on nonhuman proteins-is more similar to humanized scFvs than might be anticipated. Together, we expect that engineered binding scaffolds and natural ligands and receptors will be increasingly used for the design of CAR T cells.


Assuntos
Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T/imunologia , Antígenos CD19/genética , Antígenos CD19/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva/métodos , Ligantes , Receptores de Antígenos de Linfócitos T/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico
10.
Ther Adv Med Oncol ; 12: 1758835920937891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774473

RESUMO

BACKGROUND: Low survival rates in metastatic high-grade osteosarcoma (HGOS) have remained stagnant for the last three decades. This study aims to investigate the role of aminopeptidase N (ANPEP) in HGOS progression and its targeting with a novel lipophilic peptidase-enhanced cytotoxic compound melphalan flufenamide (melflufen) in HGOS. METHODS: Meta-analysis of publicly available gene expression datasets was performed to determine the impact of ANPEP gene expression on metastasis-free survival of HGOS patients. The efficacy of standard-of-care anti-neoplastic drugs and a lipophilic peptidase-enhanced cytotoxic conjugate melflufen was investigated in patient-derived HGOS ex vivo models and cell lines. The kinetics of apoptosis and necrosis induced by melflufen and doxorubicin were compared. Anti-neoplastic effects of melflufen were investigated in vivo. RESULTS: Elevated ANPEP expression in diagnostic biopsies of HGOS patients was found to significantly reduce metastasis-free survival. In drug sensitivity assays, melflufen has shown an anti-proliferative effect in HGOS ex vivo samples and cell lines, including those resistant to methotrexate, etoposide, doxorubicin, and PARP inhibitors. Further, HGOS cells treated with melflufen displayed a rapid induction of apoptosis and this sensitivity correlated with high expression of ANPEP. In combination treatments, melflufen demonstrated synergy with doxorubicin in killing HGOS cells. Finally, Melflufen displayed anti-tumor growth and anti-metastatic effects in vivo. CONCLUSION: This study may pave the way for use of melflufen as an adjuvant to doxorubicin in improving the therapeutic efficacy for the treatment of metastatic HGOS.

11.
Nat Commun ; 11(1): 4166, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820173

RESUMO

T cells engineered to express chimeric antigen receptors (CAR-T cells) have shown impressive clinical efficacy in the treatment of B cell malignancies. However, the development of CAR-T cell therapies for solid tumors is hampered by the lack of truly tumor-specific antigens and poor control over T cell activity. Here we present an avidity-controlled CAR (AvidCAR) platform with inducible and logic control functions. The key is the combination of (i) an improved CAR design which enables controlled CAR dimerization and (ii) a significant reduction of antigen-binding affinities to introduce dependence on bivalent interaction, i.e. avidity. The potential and versatility of the AvidCAR platform is exemplified by designing ON-switch CARs, which can be regulated with a clinically applied drug, and AND-gate CARs specifically recognizing combinations of two antigens. Thus, we expect that AvidCARs will be a highly valuable platform for the development of controllable CAR therapies with improved tumor specificity.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica/imunologia , Humanos , Ativação Linfocitária/imunologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(26): 14926-14935, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554495

RESUMO

Molecular ON-switches in which a chemical compound induces protein-protein interactions can allow cellular function to be controlled with small molecules. ON-switches based on clinically applicable compounds and human proteins would greatly facilitate their therapeutic use. Here, we developed an ON-switch system in which the human retinol binding protein 4 (hRBP4) of the lipocalin family interacts with engineered hRBP4 binders in a small molecule-dependent manner. Two different protein scaffolds were engineered to bind to hRBP4 when loaded with the orally available small molecule A1120. The crystal structure of an assembled ON-switch shows that the engineered binder specifically recognizes the conformational changes induced by A1120 in two loop regions of hRBP4. We demonstrate that this conformation-specific ON-switch is highly dependent on the presence of A1120, as demonstrated by an ∼500-fold increase in affinity upon addition of the small molecule drug. Furthermore, the ON-switch successfully regulated the activity of primary human CAR T cells in vitro. We anticipate that lipocalin-based ON-switches have the potential to be broadly applied for the safe pharmacological control of cellular therapeutics.


Assuntos
Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linhagem Celular , Citocinas/imunologia , Humanos , Lipocalinas/genética , Lipocalinas/imunologia , Conformação Molecular , Piperidinas/química , Piperidinas/farmacologia , Receptores de Antígenos Quiméricos/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Proteínas Plasmáticas de Ligação ao Retinol/imunologia , Linfócitos T/efeitos dos fármacos
13.
Cancers (Basel) ; 12(3)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121414

RESUMO

Chimeric antigen receptor (CAR) T cells have proven to be a powerful cellular therapy for B cell malignancies. Massive efforts are now being undertaken to reproduce the high efficacy of CAR T cells in the treatment of other malignancies. Here, predictive preclinical model systems are important, and the current gold standard for preclinical evaluation of CAR T cells are mouse xenografts. However, mouse xenograft assays are expensive and slow. Therefore, an additional vertebrate in vivo assay would be beneficial to bridge the gap from in vitro to mouse xenografts. Here, we present a novel assay based on embryonic zebrafish xenografts to investigate CAR T cell-mediated killing of human cancer cells. Using a CD19-specific CAR and Nalm-6 leukemia cells, we show that live observation of killing of Nalm-6 cells by CAR T cells is possible in zebrafish embryos. Furthermore, we applied Fiji macros enabling automated quantification of Nalm-6 cells and CAR T cells over time. In conclusion, we provide a proof-of-principle study that embryonic zebrafish xenografts can be used to investigate CAR T cell-mediated killing of tumor cells. This assay is cost-effective, fast, and offers live imaging possibilities to directly investigate CAR T cell migration, engagement, and killing of effector cells.

14.
Artigo em Inglês | MEDLINE | ID: mdl-32117929

RESUMO

The transmembrane protein CD19 is exclusively expressed on normal and malignant B cells and therefore constitutes the target of approved CAR-T cell-based cancer immunotherapies. Current efforts to assess CAR-T cell functionality in a quantitative fashion both in vitro and in vivo are hampered by the limited availability of the properly folded recombinant extracellular domain of CD19 (CD19-ECD) considered as "difficult-to-express" (DTE) protein. Here, we successfully expressed a novel fusion construct consisting of the full-length extracellular domain of CD19 and domain 2 of human serum albumin (CD19-AD2), which was integrated into the Rosa26 bacterial artificial chromosome vector backbone for generation of a recombinant CHO-K1 production cell line. Product titers could be further boosted using valproic acid as a chemical chaperone. Purified monomeric CD19-AD2 proved stable as shown by non-reduced SDS-PAGE and SEC-MALS measurements. Moreover, flow cytometric analysis revealed specific binding of CD19-AD2 to CD19-CAR-T cells. Finally, we demonstrate biological activity of our CD19-AD2 fusion construct as we succeeded in stimulating CD19-CAR-T cells effectively with the use of CD19-AD2-decorated planar supported lipid bilayers.

15.
Sci Rep ; 8(1): 17453, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487534

RESUMO

Bispecific T cell engager (BiTE) antibody constructs are successfully used as cancer therapeutics. We hypothesized that this treatment strategy could also be applicable for therapy of human cytomegalovirus (HCMV) infection, since HCMV-encoded proteins are abundantly expressed on the surface of infected cells. Here we show that a BiTE antibody construct directed against HCMV glycoprotein B (gB) and CD3 efficiently triggers T cells to secrete IFN-γ and TNF upon co-culture with fibroblasts infected with HCMV strain AD169, Towne or Toledo. Titration of gB expression levels in non-infected cells confirmed that already low levels of gB are sufficient for efficient triggering of T cells in presence of the BiTE antibody construct. Comparison of redirecting T cells with the bispecific antibody versus a chimeric antigen receptor (CAR) based on the same scFv showed a similar sensitivity for gB expression. Although lysis of infected target cells was absent, the BiTE antibody construct inhibited HCMV replication by triggering cytokine production. Notably, even strongly diluted supernatants of the activated T cells efficiently blocked the replication of HCMV in infected primary fibroblasts. In summary, our data prove the functionality of the first BiTE antibody construct targeting an HCMV-encoded glycoprotein for inhibiting HCMV replication in infected cells.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Antivirais/imunologia , Complexo CD3/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Linfócitos T/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Antivirais/farmacologia , Especificidade de Anticorpos/imunologia , Complexo CD3/antagonistas & inibidores , Citocinas/metabolismo , Citomegalovirus/efeitos dos fármacos , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Humanos , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Proteínas do Envelope Viral/antagonistas & inibidores , Replicação Viral/imunologia
17.
Aging (Albany NY) ; 8(1): 16-33, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26752347

RESUMO

Aging results in a decline of physiological functions and in reduced repair capacities, in part due to impaired regenerative power of stem cells, influenced by the systemic environment. In particular osteogenic differentiation capacity (ODC) of mesenchymal stem cells (MSCs) has been shown to decrease with age, thereby contributing to reduced bone formation and an increased fracture risk. Searching for systemic factors that might contribute to this age related decline of regenerative capacity led us to investigate plasma-derived extracellular vesicles (EVs). EVs of the elderly were found to inhibit osteogenesis compared to those of young individuals. By analyzing the differences in the vesicular content Galectin-3 was shown to be reduced in elderly-derived vesicles. While overexpression of Galectin-3 resulted in an enhanced ODC of MSCs, siRNA against Galectin-3 reduced osteogenesis. Modulation of intravesicular Galectin-3 levels correlated with an altered osteo-inductive potential indicating that vesicular Galectin-3 contributes to the biological response of MSCs to EVs. By site-directed mutagenesis we identified a phosphorylation-site on Galectin-3 mediating this effect. Finally, we showed that cell penetrating peptides comprising this phosphorylation-site are sufficient to increase ODC in MSCs. Therefore, we suggest that decrease of Galectin-3 in the plasma of elderly contributes to the age-related loss of ODC.


Assuntos
Envelhecimento/metabolismo , Senescência Celular , Vesículas Extracelulares/metabolismo , Galectina 3/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Adulto , Fatores Etários , Envelhecimento/sangue , Proteínas Sanguíneas , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Células Cultivadas , Regulação para Baixo , Vesículas Extracelulares/efeitos dos fármacos , Feminino , Galectina 3/sangue , Galectina 3/genética , Galectinas , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Mutação , Osteogênese/efeitos dos fármacos , Fosforilação , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Transfecção , Adulto Jovem
18.
Bone ; 79: 43-51, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26026730

RESUMO

Osteoporosis is the consequence of altered bone metabolism resulting in the systemic reduction of bone strength and increased risk of fragility fractures. MicroRNAs (miRNAs) regulate gene expression on a post-transcriptional level and are known to take part in the control of bone formation and bone resorption. In addition, it is known that miRNAs are secreted by many cell types and can transfer "messages" to recipient cells. Thus, circulating miRNAs might not only be useful as surrogate biomarkers for the diagnosis or prognosis of pathological conditions, but could be actively modulating tissue physiology. Therefore, the aim of this study was to test whether circulating miRNAs that exhibit changes in recent osteoporotic fracture patients could be causally related to bone metabolism. In the first step we performed an explorative analysis of 175 miRNAs in serum samples obtained from 7 female patients with recent osteoporotic fractures at the femoral neck, and 7 age-matched female controls. Unsupervised cluster analysis revealed a high discriminatory power of the top 10 circulating miRNAs for patients with recent osteoporotic fractures. In total 6 miRNAs, miR-10a-5p, miR-10b-5p, miR-133b, miR-22-3p, miR-328-3p, and let-7g-5p exhibited significantly different serum levels in response to fracture (adjusted p-value<0.05). These miRNAs were subsequently analyzed in a validation cohort of 23 patients (11 control, 12 fracture), which confirmed significant regulation for miR-22-3p, miR-328-3p, and let-7g-5p. A set of these and of other miRNAs known to change in the context of osteoporotic fractures were subsequently tested for their effects on osteogenic differentiation of human mesenchymal stem cells (MSCs) in vitro. The results show that 5 out of 7 tested miRNAs can modulate osteogenic differentiation of MSCs in vitro. Overall, these data suggest that levels of specific circulating miRNAs change in the context of recent osteoporotic fractures and that such perturbations of "normal" levels might affect bone metabolism or bone healing processes.


Assuntos
Diferenciação Celular/genética , MicroRNAs/sangue , Osteogênese/genética , Fraturas por Osteoporose/genética , Idoso , Feminino , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoporose Pós-Menopausa/complicações , Fraturas por Osteoporose/sangue , Reação em Cadeia da Polimerase , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA