RESUMO
BACKGROUND: Partial pressure of carbon dioxide (PaCO2) is generally known to influence outcome in patients with traumatic brain injury (TBI) at normal altitudes. Less is known about specific relationships of PaCO2 levels and clinical outcomes at high altitudes. METHODS: This is a prospective single-center cohort of consecutive patients with TBI admitted to a trauma center located at 2600 m above sea level. An unfavorable outcome was defined as a Glasgow Outcome Scale-Extended (GOSE) score < 4 at the 6-month follow-up. RESULTS: We had a total of 81 patients with complete data, 80% (65/81) were men, and the median (interquartile range) age was 36 (25-50) years. Median Glasgow Coma Scale (GCS) score on admission was 9 (6-14); 49% (40/81) of patients had severe TBI (GCS 3-8), 32% (26/81) had moderate TBI (GCS 12-9), and 18% (15/81) had mild TBI (GCS 13-15). The median (interquartile range) Abbreviated Injury Score of the head (AISh) was 3 (2-4). The frequency of an unfavorable outcome (GOSE < 4) was 30% (25/81), the median GOSE was 4 (2-5), and the median 6-month mortality rate was 24% (20/81). Comparison between patients with favorable and unfavorable outcomes revealed that those with unfavorable outcome were older, (median age 49 [30-72] vs. 29 [22-41] years, P < 0.01), had lower admission GCS scores (6 [4-8] vs. 13 [8-15], P < 0.01), had higher AISh scores (4 [4-4] vs. 3 [2-4], P < 0.01), had higher Acute Physiology and Chronic Health disease Classification System II scores (17 [15-23] vs. 10 [6-14], P < 0.01), had higher Charlson scores (0 [0-2] vs. 0 [0-0], P < 0.01), and had higher PaCO2 levels (mean 35 ± 8 vs. 32 ± 6 mm Hg, P < 0.01). In a multivariate analysis, age (odds ratio [OR] 1.14, 95% confidence interval [CI] 1.1-1.30, P < 0.01), AISh (OR 4.7, 95% CI 1.55-21.0, P < 0.05), and PaCO2 levels (OR 1.23, 95% CI 1.10-1.53, P < 0.05) were significantly associated with the unfavorable outcomes. When applying the same analysis to the subgroup on mechanical ventilation, AISh (OR 5.4, 95% CI 1.61-28.5, P = 0.017) and PaCO2 levels (OR 1.36, 95% CI 1.13-1.78, P = 0.015) remained significantly associated with the unfavorable outcome. CONCLUSIONS: Higher PaCO2 levels are associated with an unfavorable outcome in ventilated patients with TBI. These results underscore the importance of PaCO2 levels in patients with TBI and whether it should be adjusted for populations living at higher altitudes.
RESUMO
Introduction: Normal Pressure Hydrocephalus (NPH) is a prominent type of reversible dementia that may be treated with shunt surgery, and it is crucial to differentiate it from irreversible degeneration caused by its symptomatic mimics like Alzheimer's Dementia (AD) and Parkinson's Disease (PD). Similarly, it is important to distinguish between (normal pressure) hydrocephalus and irreversible atrophy/degeneration which are among the chronic effects of Traumatic Brain Injury (cTBI), as the former may be reversed through shunt placement. The purpose of this review is to elucidate the structural imaging markers which may be foundational to the development of accurate, noninvasive, and accessible solutions to this problem. Methods: By searching the PubMed database for keywords related to NPH, AD, PD, and cTBI, we reviewed studies that examined the (1) distinct neuroanatomical markers of degeneration in NPH versus AD and PD, and atrophy versus hydrocephalus in cTBI and (2) computational methods for their (semi-) automatic assessment on Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) scans. Results: Structural markers of NPH and those that can distinguish it from AD have been well studied, but only a few studies have explored its structural distinction between PD. The structural implications of cTBI over time have been studied. But neuroanatomical markers that can predict shunt response in patients with either symptomatic idiopathic NPH or post-traumatic hydrocephalus have not been reliably established. MRI-based markers dominate this field of investigation as compared to CT, which is also reflected in the disproportionate number of MRI-based computational methods for their automatic assessment. Conclusion: Along with an up-to-date literature review on the structural neurodegeneration due to NPH versus AD/PD, and hydrocephalus versus atrophy in cTBI, this article sheds light on the potential of structural imaging markers as (differential) diagnostic aids for the timely recognition of patients with reversible (normal pressure) hydrocephalus, and opportunities to develop computational tools for their objective assessment.
RESUMO
STUDY DESIGN: Clinical practice guideline development. OBJECTIVES: Acute spinal cord injury (SCI) can result in devastating motor, sensory, and autonomic impairment; loss of independence; and reduced quality of life. Preclinical evidence suggests that early decompression of the spinal cord may help to limit secondary injury, reduce damage to the neural tissue, and improve functional outcomes. Emerging evidence indicates that "early" surgical decompression completed within 24 hours of injury also improves neurological recovery in patients with acute SCI. The objective of this clinical practice guideline (CPG) is to update the 2017 recommendations on the timing of surgical decompression and to evaluate the evidence with respect to ultra-early surgery (in particular, but not limited to, <12 hours after acute SCI). METHODS: A multidisciplinary, international, guideline development group (GDG) was formed that consisted of spine surgeons, neurologists, critical care specialists, emergency medicine doctors, physical medicine and rehabilitation professionals, as well as individuals living with SCI. A systematic review was conducted based on accepted methodological standards to evaluate the impact of early (within 24 hours of acute SCI) or ultra-early (in particular, but not limited to, within 12 hours of acute SCI) surgery on neurological recovery, functional outcomes, administrative outcomes, safety, and cost-effectiveness. The GRADE approach was used to rate the overall strength of evidence across studies for each primary outcome. Using the "evidence-to-recommendation" framework, recommendations were then developed that considered the balance of benefits and harms, financial impact, patient values, acceptability, and feasibility. The guideline was internally appraised using the Appraisal of Guidelines for Research and Evaluation (AGREE) II tool. RESULTS: The GDG recommended that early surgery (≤24 hours after injury) be offered as the preferred option for adult patients with acute SCI regardless of level. This recommendation was based on moderate evidence suggesting that patients were 2 times more likely to recover by ≥ 2 ASIA Impairment Score (AIS) grades at 6 months (RR: 2.76, 95% CI 1.60 to 4.98) and 12 months (RR: 1.95, 95% CI 1.26 to 3.18) if they were decompressed within 24 hours compared to after 24 hours. Furthermore, patients undergoing early surgery improved by an additional 4.50 (95% 1.70 to 7.29) points on the ASIA Motor Score compared to patients undergoing surgery after 24 hours post-injury. The GDG also agreed that a recommendation for ultra-early surgery could not be made on the basis of the current evidence because of the small sample sizes, variable definitions of what constituted ultra-early in the literature, and the inconsistency of the evidence. CONCLUSIONS: It is recommended that patients with an acute SCI, regardless of level, undergo surgery within 24 hours after injury when medically feasible. Future research is required to determine the differential effectiveness of early surgery in different subpopulations and the impact of ultra-early surgery on neurological recovery. Moreover, further work is required to define what constitutes effective spinal cord decompression and to individualize care. It is also recognized that a concerted international effort will be required to translate these recommendations into policy.
RESUMO
OBJECTIVE: The objective of this study was to develop a computational pipeline that extracts objective features of ventriculomegaly from non-contrast CT (NCCT) for the accurate classification of idiopathic normal pressure hydrocephalus (NPH) from headache controls (HCs), Alzheimer's dementia (AD), and posttraumatic encephalomalacia (PTE). METHODS: Patients with possible NPH (n = 79) and a subset with definite NPH (DefNPH; n = 29) were retrospectively identified in the Veterans Affairs Informatics and Computing Infrastructure system, along with the AD (n = 62), PTE (n = 53), and HC (n = 59) cohorts. Image-processing pipelines were developed to extract a novel feature capturing the maximum eccentricity of the lateral ventricles (MaxEccLV), a proxy splenial angle (p-SA), the Evans indices (EI-x, -y, and -z), callosal angle, normalized maximum third-ventricle width, and CSF to brain volume ratio from their NCCT scans. The authors used t-tests to examine group differences in the features and multivariate logistic regression models for classification. Additionally, the NPH versus HC classifier was validated on external data. RESULTS: When NPH and DefNPH were compared with HC, AD, and PTE, significant differences were found in all features except the p-SA, which only significantly differed between NPH and PTE. The test-set area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were 0.98, 100%, and 98.3% for NPH versus HC classification; 0.94, 87.3%, and 85.5% for NPH versus AD; 0.96, 92.4%, and 90.6% for NPH versus PTE; and 0.96, 94%, and 88% for NPH versus the other groups using logistic regression under five-fold cross-validation. Consistently high performance was noted for DefNPH. The NPH versus HC classifier provided an AUC of 0.84, sensitivity of 76.9%, and specificity of 90% when assessed on external data. CONCLUSIONS: Including the novel MaxEccLV, this framework computes useful features of ventriculomegaly, which had not previously been algorithmically assessed on NCCT. This framework successfully classified possible and definite NPH from HC, AD, and PTE. Following validation on larger representative cohorts, this objective and accessible tool may aid in screening for NPH and differentiating it from symptomatic mimics such as AD and PTE.
Assuntos
Hidrocefalia de Pressão Normal , Tomografia Computadorizada por Raios X , Humanos , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Feminino , Masculino , Idoso , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Doença de Alzheimer/diagnóstico por imagem , Ventrículos Cerebrais/diagnóstico por imagemRESUMO
Background: partial pressure of carbon dioxide (PaCO2) is generally known to influence outcome in patients with traumatic brain injury (TBI) at normal altitudes. Less is known about specific relationships of PaCO2 levels and clinical outcomes at high altitudes. Methods: This is a prospective single-center cohort of consecutive TBI patients admitted to a trauma center located at 2600 meter above sea level. An unfavorable outcome was defined as the Glasgow Outcome Scale-Extended (GOSE) < 4 at 6-month follow-up. Results: 81 patients with complete data, 80% (65/81) were men, and median (IQR) age was 36 (25-50) years). Median Glasgow Coma Scale (GCS) on admission was 9 (6-14), 49% (40/81) were severe (GCS: 3-8), 32% (26/81) moderate (GCS 12 - 9), and 18% (15/81) mild (GCS 13-15) TBI. The median (IQR) Abbreviated Injury Score of the Head (AISh) was 3 (2-4). Frequency of an unfavorable outcome (GOSE < 4) was 30% (25/81), median GOSE was 4 (2-5), and 6-month mortality was 24% (20/81). Comparison between patients with favorable and unfavorable outcomes revealed that those with unfavorable outcome were older, median [49 (30-72) vs. 29 (22-41), P < 0.01], had lower admission GCS [6 (4-8) vs. 13 (8-15), P < 0.01], higher AIS head [4 (4-4) vs. 3(2-4), p < 0.01], higher APACHE II score [17(15-23) vs 10 (6-14), < 0.01), higher Charlson score [0(0-2) vs. 0 (0-0), P < 0.01] and higher PaCO2 (mmHg), mean ± SD, 39 ± 9 vs. 32 ± 6, P < 0.01. In a multivariate analysis, age (OR 1.14 95% CI 1.1-1.30, P < 0.01), AISh (OR 4.7 95% CI 1.55-21.0, P < 0.05), and PaCO2 (OR 1.23 95% CI: 1.10-1.53, P < 0.05) were significantly associated with the unfavorable outcomes. When applying the same analysis to the subgroup on mechanical ventilation, AISh (OR 5.4 95% CI: 1.61-28.5, P = 0.017) and PaCO2 (OR 1.36 95% CI: 1.13-1.78, P = 0.015) remained significantly associated with the unfavorable outcome. Conclusion: Higher PaCO2 levels are associated with an unfavorable outcome in ventilated TBI patients. These results underscore the importance of PaCO2 level in TBI patients and whether it should be adjusted for populations living at higher altitudes.
RESUMO
Sexual dysfunction is a common consequence for women with spinal cord injury (SCI); however, current treatments are ineffective, especially in the under-prioritized population of women with SCI. This case-series, a secondary analysis of the Epidural Stimulation After Neurologic Damage (E-STAND) clinical trial aimed to investigate the effect of epidural spinal cord stimulation (ESCS) on sexual function and distress in women with SCI. Three females, with chronic, thoracic, sensorimotor complete SCI received daily (24 h/day) tonic ESCS for 13 months. Questionnaires, including the Female Sexual Function Index (FSFI) and Female Sexual Distress Scale (FSDS) were collected monthly. There was a 3.2-point (13.2%) mean increase in total FSFI from baseline (24.5 ± 4.1) to post-intervention (27.8 ± 6.6), with a 4.8-50% improvement in the sub-domains of desire, arousal, orgasm and satisfaction. Sexual distress was reduced by 55%, with a mean decrease of 12 points (55.4%) from baseline (21.7 ± 17.2) to post-intervention (9.7 ± 10.8). There was a clinically meaningful change of 14 points in the International Standards for Neurological Classification of Spinal Cord Injury total sensory score from baseline (102 ± 10.5) to post-intervention (116 ± 17.4), without aggravating dyspareunia. ESCS is a promising treatment for sexual dysfunction and distress in women with severe SCI. Developing therapeutic interventions for sexual function is one of the most meaningful recovery targets for people with SCI. Additional large-scale investigations are needed to understand the long-term safety and feasibility of ESCS as a viable therapy for sexual dysfunction. Clinical Trial Registration:https://clinicaltrials.gov/ct2/show/NCT03026816, NCT03026816.
RESUMO
Multiple studies have corroborated the restoration of volitional motor control after motor-complete spinal cord injury (SCI) through the use of epidural spinal cord stimulation (eSCS), but rigorous quantitative descriptions of muscle coordination have been lacking. Six participants with chronic, motor and sensory complete SCI underwent a brain motor control assessment (BMCA) consisting of a set of structured motor tasks with and without eSCS. We investigated how muscle activity complexity and muscle synergies changed with and without stimulation. We performed this analysis to better characterize the impact of stimulation on neuromuscular control. We also recorded data from nine healthy participants as controls. Competition exists between the task origin and neural origin hypotheses underlying muscle synergies. The ability to restore motor control with eSCS in participants with motor and sensory complete SCI allows us to test whether changes in muscle synergies reflect a neural basis in the same task. Muscle activity complexity was computed with Higuchi Fractal Dimensional (HFD) analysis, and muscle synergies were estimated using non-negative matrix factorization (NNMF) in six participants with American Spinal Injury Association (ASIA) Impairment Score (AIS) A. We found that the complexity of muscle activity was immediately reduced by eSCS in the SCI participants. We also found that over the follow-up sessions, the muscle synergy structure of the SCI participants became more defined, and the number of synergies decreased over time, indicating improved coordination between muscle groups. Lastly, we found that the muscle synergies were restored with eSCS, supporting the neural hypothesis of muscle synergies. We conclude that eSCS restores muscle movements and muscle synergies that are distinct from those of healthy, able-bodied controls.
Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Estimulação da Medula Espinal/métodos , Medula EspinalRESUMO
Background: Epidural spinal cord stimulation (eSCS) restores volitional movement and improves autonomic function after nonpenetrating and traumatic spinal cord injury (SCI). There is limited evidence of its utility for penetrating SCI (pSCI). Case Description: A 25-year-old male sustained a gunshot wound (GSW) resulting in T6 motor/sensory paraplegia and complete loss of bowel and bladder function. Following eSCS placement, he regained partial volitional movement and has independent bowel movements 40% of the time. Conclusion: A 25-year-old pSCI patient who, following a GSW resulting in T6-level paraplegia, sustained marked recovery of volitional movement and autonomic function following eSCS placement.
RESUMO
Abstract Epidural spinal cord stimulation (eSCS) of the lower thoracic spinal cord has been shown to partially restore volitional movement in patients with complete chronic spinal cord injury (cSCI). Combining eSCS with intensive locomotor training improves motor function, including standing and stepping, but many patients with cSCI suffer from long-standing muscle atrophy and loss of bone mineral density, which may prohibit safe implementation. Safe, accessible, and effective avenues for pairing neuromodulation with activity-based therapy remain unexplored. Cycling is one such option that can be utilized as an eSCS therapy given its low-risk and low-weight-bearing requirement. We investigated the feasibility and kinematics of motor-assisted and passive cycle-based therapy for cSCI patients with epidural spinal cord stimulation. Seven participants who underwent spinal cord stimulation surgery in the Epidural Stimulation After Neurologic Damage (E-STAND) trial (NCT03026816) participated in a cycling task using the motor assist MOTOmed Muvi 300. A factorial design was used such that participants were asked to cycle with and without conscious effort with and without stimulation. We used mixed effects models assessing maximum power output and time pedaling unassisted to evaluate the interaction between stimulation and conscious effort. Cycling was well-tolerated and we observed no adverse events, including in participants up to 17 years post-initial injury and up to 58 years old. All participants were found to be able to pedal without motor assist, which primarily occurred when stimulation and effort were applied together (p = 0.001). Additionally, the combination of stimulation and intention was significantly associated with higher maximum power production (p < 0.0001) and distance pedaled (p = 0.0001). No association was found between volitional movement and participant factors: age, time since injury, and spinal cord atrophy. With stimulation and conscious effort, all participants were able to achieve active cycling without motor assistance. Thus, our stationary cycling factorial study design demonstrated volitional movement restoration with eSCS in a diverse study population of cSCI participants. Further, motor-assist cycling was well-tolerated without any adverse events. Cycling has the potential to be a safe research assessment and physical therapy modality for cSCI patients utilizing eSCS who have a high risk of injury with weight bearing exercise. The cycling modality in this study was demonstrated to be a straightforward assessment of motor function and safe for all participants regardless of age or time since initial injury.
RESUMO
OBJECTIVES: Epidural spinal cord stimulation (eSCS) has shown promise for restoring some volitional motor control after spinal cord injury (SCI). Maximizing therapeutic response requires effective spatial stimulation generated through careful configuration of anodes and cathodes on the eSCS lead. By exploring the way the spatial distribution of low frequency stimulation affects muscle activation patterns, we investigated the spatial specificity of stimulation-evoked responses for targeted muscle groups for restoration after chronic SCI (cSCI) in participants in the Epidural Stimulation After Neurologic Damage (E-STAND) trial. MATERIALS AND METHODS: Fifteen participants with Abbreviated Injury Scale A cSCI from the E-STAND study were evaluated with a wide range of bipolar spatial patterns. Surface electromyography captured stimulation-evoked responses from the rectus abdominis (RA), intercostal, paraspinal, iliopsoas, rectus femoris (RF), tibialis anterior (TA), extensor hallucis longus (EHL), and gastrocnemius muscle groups bilaterally. Peak-to-peak amplitudes were analyzed for each pulse across muscles. Stimulation patterns with dipoles parallel (vertical configurations), perpendicular (horizontal configurations), and oblique (diagonal configurations) relative to the rostral-caudal axis were evaluated. RESULTS: Cathodic stimulation in the transverse plane indicated ipsilaterally biased activation in RA, intercostal, paraspinal, iliopsoas, RF, TA, EHL, and gastrocnemius muscles (p < 0.05). We found that caudal cathodic stimulation was significantly more activating only in the RF and EHL muscle groups than in the rostral (p < 0.037 and p < 0.006, respectively). Oblique stimulation was found to be more activating in the RA, intercostal, paraspinal, iliopsoas, and TA muscle groups than in the transverse (p < 0.05). CONCLUSIONS: Cathodic stimulation provides uniform specificity for targeting laterality. Few muscle groups responded specifically to variation in rostral/caudal stimulation, and oblique stimulation improved stimulation responses when compared with horizontal configurations. These relations may enable tailored targeting of muscle groups, but the surprising amount of variation observed suggests that monitoring these evoked muscle responses will play a key role in this tailoring process. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT03026816.
Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Humanos , Eletrodos , Eletromiografia , Músculo Esquelético/fisiologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/terapiaRESUMO
Introduction: In order to obtain FDA Marketing Authorization for aid in the diagnosis of concussion, an eye tracking study in an intended use population was conducted. Methods: Potentially concussed subjects recruited in emergency department and concussion clinic settings prospectively underwent eye tracking and a subset of the Sport Concussion Assessment Tool 3 at 6 sites. The results of an eye tracking-based classifier model were then validated against a pre-specified algorithm with a cutoff for concussed vs. non-concussed. The sensitivity and specificity of eye tracking were calculated after plotting of the receiver operating characteristic curve and calculation of the AUC (area under curve). Results: When concussion is defined by SCAT3 subsets, the sensitivity and specificity of an eye tracking algorithm was 80.4 and 66.1%, The AUC was 0.718. The misclassification rate (n = 282) was 31.6%. Conclusion: A pre-specified algorithm and cutoff for diagnosis of concussion vs. non-concussion has a sensitivity and specificity that is useful as a baseline-free aid in diagnosis of concussion. Eye tracking has potential to serve as an objective "gold-standard" for detection of neurophysiologic disruption due to brain injury.
RESUMO
BACKGROUND: Symptomatic disseminated myxopapillary ependymoma (MPE) in a young person presents a daunting challenge because the risks of prolonged prone positioning and spinal cord injury may outweigh the likelihood of attaining the benefit of gross total resection. OBSERVATIONS: The authors reported the case of a 15-year-old girl with five discrete recurrent spinal cord ependymomas. The patient received a 25-hour surgical procedure for gross total resection of the tumors and fusion over an approximately 33-hour period. She experienced complete resolution of all preoperative neurological symptoms and subsequently received adjuvant radiation therapy. At 52 months after surgery, she was still experiencing neurologically intact, progression-free survival. This case illustrated one of the most extensive recurrent tumor resections for MPE with prolonged disease-free survival reported to date. It may also represent the longest prone position spinal case reported and was notable for a lack of any of the complications commonly associated with the prolonged prone position. LESSONS: The authors discussed the complexity of surgical decision-making in a symptomatic patient with multiple disseminated metastases, technical considerations for resection of intradural and intramedullary spinal cord tumors, and considerations for avoiding complications during prolonged positioning necessary for spinal surgery.
RESUMO
Women and minorities leave or fail to advance in the neurosurgical workforce more frequently than white men at all levels from residency to academia. The consequences of this inequity are most profound in fields such as traumatic brain injury (TBI), which lacks objective measures. We evaluated published articles on TBI clinical research and found that TBI primary investigators or corresponding authors were 86·5% White and 59·5% male. First authors from the resulting publications were 92.6% white. Most study participants were male (68%). 64·4% of NIH-funded TBI clinical trials did not report or recruit any black subjects and this number was even higher for other races and the Hispanic ethnicity. We propose several measures for mitigation of the consequences of the inequitable workforce in traumatic brain injury that could potentially contribute to more equitable outcomes. The most immediately feasible of these is validation and establishment of objective measures for triage and prognostication that are less susceptible to bias than current protocols. We call for incorporation of gender and race neutral metrics for TBI evaluation to standardize classification of injury. We offer insights into how socioeconomic factors contribute to increased death rates from women and minority groups. We propose the need to study how these disparities are caused by unfair health insurance reimbursement practices. Surgical and clinical research inequities have dire consequences, and until those inequities can be corrected, mitigation of those consequences requires system wide change.
RESUMO
INTRODUCTION: Spinal cord injury (SCI) leads to significant changes in morbidity, mortality and quality of life (QOL). Currently, there are no effective therapies to restore function after chronic SCI. Preliminary studies have indicated that epidural spinal cord stimulation (eSCS) is a promising therapy to improve motor control and autonomic function for patients with chronic SCI. The aim of this study is to assess the effects of tonic eSCS after chronic SCI on quantitative outcomes of volitional movement and cardiovascular function. Our secondary objective is to optimise spinal cord stimulation parameters for volitional movement. METHODS AND ANALYSIS: The Epidural Stimulation After Neurologic Damage (ESTAND) trial is a phase II single-site self-controlled trial of epidural stimulation with the goal of restoring volitional movement and autonomic function after motor complete SCI. Participants undergo epidural stimulator implantation and are followed up over 15 months while completing at-home, mobile application-based movement testing. The primary outcome measure integrates quantity of volitional movement and similarity to normal controls using the volitional response index (VRI) and the modified Brain Motor Control Assessment. The mobile application is a custom-designed platform to support participant response and a kinematic task to optimise the settings for each participant. The application optimises stimulation settings by evaluating the parameter space using movement data collected from the tablet application and accelerometers. A subgroup of participants with cardiovascular dysautonomia are included for optimisation of blood pressure stabilisation. Indirect effects of stimulation on cardiovascular function, pain, sexual function, bowel/bladder, QOL and psychiatric measures are analysed to assess generalisability of this targeted intervention. ETHICS AND DISSEMINATION: This study has been approved after full review by the Minneapolis Medical Research Foundation Institutional Review Board and by the Minneapolis VA Health Care System. This project has received Food and Drug Administration investigational device exemption approval. Trial results will be disseminated through peer-reviewed publications, conference presentations and seminars. TRIAL REGISTRATION NUMBER: NCT03026816.
Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Ensaios Clínicos Fase II como Assunto , Espaço Epidural , Humanos , Movimento , Qualidade de Vida , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Estimulação da Medula Espinal/métodosRESUMO
STUDY DESIGN: Cohort prospective study. OBJECTIVES: Epidural spinal cord stimulation (eSCS) improves volitional motor and autonomic function after spinal cord injury (SCI). While eSCS has an established history of safety for chronic pain, it remains unclear if eSCS in the SCI population presents the same risk profile. We aimed to assess safety and autonomic monitoring data for the first 14 participants in the E-STAND trial. SETTING: Hennepin County Medical Center, Minneapolis and Minneapolis Veterans Affairs Medical Center, Minnesota, USA. METHODS: Monthly follow-up visits assessed surgical and medical device-related safety outcomes as well as stimulation usage. Beat-by-beat blood pressure (BP) and continuous electrocardiogram data were collected during head-up tilt-table testing with and without eSCS. RESULTS: All participants had a motor-complete SCI. Mean (SD) age and time since injury were 38 (10) and 7 (5) years, respectively. There were no surgical complications but one device malfunction 4 months post implantation. Stimulation was applied for up to 23 h/day, across a broad range of parameters: frequency (18-700 Hz), pulse width (100-600 µs), and amplitude (0.4-17 mA), with no adverse events reported. Tilt-table testing with eSCS demonstrated no significant increases in the incidence of elevated systolic BP or a greater frequency of arrhythmias. CONCLUSIONS: eSCS to restore autonomic and volitional motor function following SCI has a similar safety profile as when used to treat chronic pain, despite the prevalence of significant comorbidities and the wide variety of stimulation parameters tested.
Assuntos
Doenças Cardiovasculares , Dor Crônica , Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Doenças Cardiovasculares/complicações , Humanos , Incidência , Estudos Prospectivos , Medula Espinal , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/epidemiologia , Traumatismos da Medula Espinal/terapia , Estimulação da Medula Espinal/efeitos adversosRESUMO
Epidural spinal cord stimulation (eSCS) has been recently recognized as a potential therapy for chronic spinal cord injury (SCI). eSCS has been shown to uncover residual pathways within the damaged spinal cord. The purpose of this review is to summarize the key findings to date regarding the use of eSCS in SCI. Searches were carried out using MEDLINE, EMBASE, and Web of Science database and reference lists of the included articles. A combination of medical subject heading terms and keywords was used to find studies investigating the use of eSCS in SCI patients to facilitate volitional movement and to restore autonomic function. The risk of bias was assessed using Risk Of Bias In Non-Randomized Studies of Interventions tool for nonrandomized studies. We were able to include 40 articles that met our eligibility criteria. The studies included a total of 184 patient experiences with incomplete or complete SCI. The majority of the studies used the Medtronic 16 paddle lead. Around half of the studies reported lead placement between T11- L1. We included studies that assessed motor (n = 28), autonomic (n = 13), and other outcomes (n = 10). The majority of the studies reported improvement in outcomes assessed. The wide range of included outcomes demonstrates the effectiveness of eSCS in treating a diverse SCI population. However, the current studies cannot definitively conclude which patients benefit the most from this intervention. Further study in this area is needed to allow improvement of the eSCS technology and allow it to be more widely available for chronic SCI patients.
Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Espaço Epidural , Humanos , Movimento , Medula Espinal , Traumatismos da Medula Espinal/terapiaRESUMO
BACKGROUND: Sport-related structural brain injury (SRSBI) is intracranial pathology incurred during sport. Management mirrors that of non-sport-related brain injury. An empirical vacuum exists regarding return to play (RTP) following SRSBI. OBJECTIVE: To provide key insight for operative management and RTP following SRSBI using a (1) focused systematic review and (2) survey of expert opinions. METHODS: A systematic literature review of SRSBI from 2012 to present in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and a cross-sectional survey of RTP in SRSBI by 31 international neurosurgeons was conducted. RESULTS: Of 27 included articles out of 241 systematically reviewed, 9 (33.0%) case reports provided RTP information for 12 athletes. To assess expert opinion, 31 of 32 neurosurgeons (96.9%) provided survey responses. For acute, asymptomatic SRSBI, 12 (38.7%) would not operate. Of the 19 (61.3%) who would operate, midline shift (63.2%) and hemorrhage size > 10 mm (52.6%) were the most common indications. Following SRSBI with resolved hemorrhage, with or without burr holes, the majority of experts (>75%) allowed RTP to high-contact/collision sports at 6 to 12 mo. Approximately 80% of experts did not endorse RTP to high-contact/collision sports for athletes with persistent hemorrhage. Following craniotomy for SRSBI, 40% to 50% of experts considered RTP at 6 to 12 mo. Linear regression revealed that experts allowed earlier RTP at higher levels of play (ß = -0.58, 95% CI -0.111, -0.005, P = .033). CONCLUSION: RTP decisions following structural brain injury in athletes are markedly heterogeneous. While individualized RTP decisions are critical, aggregated expert opinions from 31 international sports neurosurgeons provide key insight. Level of play was found to be an important consideration in RTP determinations.
Assuntos
Traumatismos em Atletas/reabilitação , Concussão Encefálica/reabilitação , Lesões Encefálicas Traumáticas/reabilitação , Volta ao Esporte/estatística & dados numéricos , Atletas , Traumatismos em Atletas/psicologia , Concussão Encefálica/psicologia , Lesões Encefálicas Traumáticas/psicologia , Tomada de Decisões , Humanos , Volta ao Esporte/psicologia , EsportesRESUMO
PURPOSE: Mild TBI, characterized by microstructural damage, often undetectable on conventional imaging techniques, is a pervasive condition that disturbs brain function and can potentially result in long-term deficits. Deciphering the underlying microstructural damage in mild TBI is crucial for establishing a reliable diagnosis and enabling effective therapeutics. Efforts to capture this damage have been extensive, but results have been inconsistent and incomplete. METHODS: To that effect, we set out to examine the shape of the diffusion tensor in mild TBI during the acute phase of injury. We inspected diffusivity and geometric measurements describing the diffusion tensor's shape and compared mild TBI (Nâ¯=â¯34, 20.4-66.6 yo) measurements with those from healthy control (Nâ¯=â¯42, 20.7-67.2 yo) participants using voxelwise tract-based spatial statistics. Subsequently, to explore associations between the diffusion measurements in mild TBI, we performed nonparametric statistics and machine learning techniques. RESULTS: Overall, mild TBI displayed a diffuse increase in Dλ2, Dλ3, Dradial, Dmean, and Cspherical, with a diffuse decrease in Afractional, Amode, and Clinear, in addition to no change in Daxial or Cplanar. Most notably, our results provide evidence for Dradial as a potential biomarker for microstructural damage, specifically its main component Dλ2, based on their performance in discriminating between mild TBI and control groups. Afractional was also found to be important for discriminating between groups. CONCLUSION: Our results revealed the importance of a diffusion measurement often overlooked, Dradial, in assessing TBI and suggest differentiating diffusion measurements has the potential utility to detect variations in the underlying pathophysiology after injury.
Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Imagem de Difusão por Ressonância Magnética , Doença Aguda , Adulto , Feminino , Humanos , Masculino , Adulto JovemRESUMO
OBJECTIVE: Current guidelines do not specify timing for management of acute spinal cord injury (aSCI) due to lack of high-quality evidence supporting specific intervals for intervention. Randomized prospective trials may be unethical. Nonetheless, physicians have been sued for delays in diagnosis and intervention. METHODS: The authors reviewed both the medical literature supporting the guidelines and the legal cases reported in the Westlaw and Lexis Advance databases from 1972 to 2018 resulting in awards or settlements, to identify whether surgeons are vulnerable to litigation despite the existence of guidelines not mandating specific timing of care. RESULTS: Timing of intervention was related to claims in 59 (36%) of 163 cases involving SCI. All 22 trauma cases identified cited timing of intervention, sometimes related to delayed diagnosis, as a reason for the lawsuit. The mean award of 10 cases in which the plaintiffs' awards were disclosed was $4,294,384. In the majority of cases, award amounts were not disclosed. CONCLUSIONS: Because conduct of a prospective, randomized trial to investigate surgical timing of intervention for aSCI may not be achievable, evidence-based guidelines will be unlikely to mandate specific timing. Nonetheless, surgeons who unreasonably delay intervention for aSCI may be at risk for litigation due to treatment delay. This is increasingly likely in an environment where "complete" SCI is difficult to verify. SCI may at some point be recognized as a surgical emergency, as brain injury generally is, despite a lack of prospective randomized trials supporting this implementation, challenging the feasibility of the US trauma infrastructure to provide care for these patients.
Assuntos
Traumatismos da Medula Espinal , Cirurgiões , Fidelidade a Diretrizes , Humanos , Estudos Prospectivos , Traumatismos da Medula Espinal/cirurgia , Coluna VertebralRESUMO
Background: Chronic spinal cord injury (SCI) portends a low probability of recovery, especially in the most severe subset of motor-complete injuries. Active spinal cord stimulation with or without intensive locomotor training has been reported to restore movement after traumatic SCI. Only three cases have been reported where participants developed restored volitional movement with active stimulation turned off after a period of chronic stimulation and only after intensive rehabilitation with locomotor training. It is unknown whether restoration of movement without stimulation is possible after stimulation alone. Objective: We describe the development of spontaneous volitional movement (SVM) without active stimulation in a subset of participants in the Epidural Stimulation After Neurologic Damage (ESTAND) trial, in which locomotor training is not prescribed as part of the study protocol, and subject's rehabilitation therapies are not modified. Methods: Volitional movement was evaluated with the Brain Motor Control Assessment using sEMG recordings and visual examination at baseline and at follow-up visits with and without stimulation. Additional functional assessment with a motor-assisted bicycle exercise at follow-up with and without stimulation identified generated work with and without effort. Results: The first seven participants had ASIA Impairment Scale (AIS) A or B thoracic SCI, a mean age of 42 years, and 7.7 years post-injury on average. Four patients developed evidence of sustained volitional movement, even in the absence of active stimulation after undergoing chronic epidural spinal cord stimulation (eSCS). Significant increases in volitional power were found between those observed to spontaneously move without stimulation and those unable (p < 0.0005). The likelihood of recovery of spontaneous volitional control was correlated with spasticity scores prior to the start of eSCS therapy (p = 0.048). Volitional power progressively improved over time (p = 0.016). Additionally, cycling was possible without stimulation (p < 0.005). Conclusion: While some SVM after eSCS has been reported in the literature, this study demonstrates sustained restoration without active stimulation after long-term eSCS stimulation in chronic and complete SCI in a subset of participants. This finding supports previous studies suggesting that "complete" SCI is likely not as common as previously believed, if it exists at all in the absence of transection and that preserved pathways are substrates for eSCS-mediated recovery in clinically motor-complete SCI. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03026816.