Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3792, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710711

RESUMO

Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase T. gondii (Txg) GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2nd metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in T. gondii. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.


Assuntos
Proteínas de Protozoários , Toxoplasma , Toxoplasma/enzimologia , Toxoplasma/genética , Glicosilação , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Humanos , Cristalografia por Raios X , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Parede Celular/metabolismo , Animais
2.
EMBO J ; 43(10): 1919-1946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360993

RESUMO

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.


Assuntos
Enzimas Ativadoras de Ubiquitina , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Humanos , Mutação de Sentido Incorreto , Ubiquitina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo
3.
Sci Adv ; 10(9): eadj8829, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416819

RESUMO

N-acetylgalactosaminyl-transferases (GalNAc-Ts) initiate mucin-type O-glycosylation, an abundant and complex posttranslational modification that regulates host-microbe interactions, tissue development, and metabolism. GalNAc-Ts contain a lectin domain consisting of three homologous repeats (α, ß, and γ), where α and ß can potentially interact with O-GalNAc on substrates to enhance activity toward a nearby acceptor Thr/Ser. The ubiquitous isoenzyme GalNAc-T1 modulates heart development, immunity, and SARS-CoV-2 infectivity, but its substrates are largely unknown. Here, we show that both α and ß in GalNAc-T1 uniquely orchestrate the O-glycosylation of various glycopeptide substrates. The α repeat directs O-glycosylation to acceptor sites carboxyl-terminal to an existing GalNAc, while the ß repeat directs O-glycosylation to amino-terminal sites. In addition, GalNAc-T1 incorporates α and ß into various substrate binding modes to cooperatively increase the specificity toward an acceptor site located between two existing O-glycans. Our studies highlight a unique mechanism by which dual lectin repeats expand substrate specificity and provide crucial information for identifying the biological substrates of GalNAc-T1.


Assuntos
Mucinas , N-Acetilgalactosaminiltransferases , Mucinas/química , Mucinas/metabolismo , N-Acetilgalactosaminiltransferases/genética , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/metabolismo , Lectinas , Especificidade por Substrato , Estrutura Terciária de Proteína , Polipeptídeo N-Acetilgalactosaminiltransferase , Açúcares
4.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873213

RESUMO

Most cellular ubiquitin signaling is initiated by UBA1, which activates and transfers ubiquitin to tens of E2 enzymes. Clonally acquired UBA1 missense mutations cause an inflammatory-hematologic overlap disease called VEXAS (vacuoles, E1, X-linked, autoinflammatory, somatic) syndrome. Despite extensive clinical investigation into this lethal disease, little is known about the underlying molecular mechanisms. Here, by dissecting VEXAS-causing UBA1 mutations, we discovered that p.Met41 mutations alter cytoplasmic isoform expression, whereas other mutations reduce catalytic activity of nuclear and cytoplasmic isoforms by diverse mechanisms, including aberrant oxyester formation. Strikingly, non-p.Met41 mutations most prominently affect transthioesterification, revealing ubiquitin transfer to cytoplasmic E2 enzymes as a shared property of pathogenesis amongst different VEXAS syndrome genotypes. A similar E2 charging bottleneck exists in some lung cancer-associated UBA1 mutations, but not in spinal muscular atrophy-causing UBA1 mutations, which instead, render UBA1 thermolabile. Collectively, our results highlight the precision of conformational changes required for faithful ubiquitin transfer, define distinct and shared mechanisms of UBA1 inactivation in diverse diseases, and suggest that specific E1-E2 modules control different aspects of tissue differentiation and maintenance.

6.
Mol Metab ; 60: 101472, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304331

RESUMO

OBJECTIVE: GALNT2, encoding polypeptide N-acetylgalactosaminyltransferase 2 (GalNAc-T2), was initially discovered as a regulator of high-density lipoprotein metabolism. GalNAc-T2 is known to exert these effects through post-translational modification, i.e., O-linked glycosylation of secreted proteins with established roles in plasma lipid metabolism. It has recently become clear that loss of GALNT2 in rodents, cattle, nonhuman primates, and humans should be regarded as a novel congenital disorder of glycosylation that affects development and body weight. The role of GALNT2 in metabolic abnormalities other than plasma lipids, including insulin sensitivity and energy homeostasis, is poorly understood. METHODS: GWAS data from the UK Biobank was used to study variation in the GALNT2 locus beyond changes in high-density lipoprotein metabolism. Experimental data were obtained through studies in Galnt2-/- mice and wild-type littermates on both control and high-fat diet. RESULTS: First, we uncovered associations between GALNT2 gene variation, adiposity, and body mass index in humans. In mice, we identify the insulin receptor as a novel substrate of GalNAc-T2 and demonstrate that Galnt2-/- mice exhibit decreased adiposity, alterations in insulin signaling and a shift in energy substrate utilization in the inactive phase. CONCLUSIONS: This study identifies a novel role for GALNT2 in energy homeostasis, and our findings suggest that the local effects of GalNAc-T2 are mediated through posttranslational modification of the insulin receptor.


Assuntos
Lipoproteínas HDL , Receptor de Insulina , Animais , Bovinos , Glicosilação , Homeostase , Camundongos , N-Acetilgalactosaminiltransferases , Polipeptídeo N-Acetilgalactosaminiltransferase
7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34732583

RESUMO

The SARS-CoV-2 coronavirus responsible for the global pandemic contains a novel furin cleavage site in the spike protein (S) that increases viral infectivity and syncytia formation in cells. Here, we show that O-glycosylation near the furin cleavage site is mediated by members of the GALNT enzyme family, resulting in decreased furin cleavage and decreased syncytia formation. Moreover, we show that O-glycosylation is dependent on the novel proline at position 681 (P681). Mutations of P681 seen in the highly transmissible alpha and delta variants abrogate O-glycosylation, increase furin cleavage, and increase syncytia formation. Finally, we show that GALNT family members capable of glycosylating S are expressed in human respiratory cells that are targets for SARS-CoV-2 infection. Our results suggest that host O-glycosylation may influence viral infectivity/tropism by modulating furin cleavage of S and provide mechanistic insight into the role of the P681 mutations found in the highly transmissible alpha and delta variants.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Animais , Fusão Celular , Linhagem Celular , Furina/metabolismo , Células Gigantes , Glicosilação , Humanos , N-Acetilgalactosaminiltransferases/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
8.
bioRxiv ; 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33564758

RESUMO

The SARS-CoV-2 coronavirus responsible for the global pandemic contains a unique furin cleavage site in the spike protein (S) that increases viral infectivity and syncytia formation. Here, we show that O-glycosylation near the furin cleavage site is mediated by specific members of the GALNT enzyme family and is dependent on the novel proline at position 681 (P681). We further demonstrate that O-glycosylation of S decreases furin cleavage. Finally, we show that GALNT family members capable of glycosylating S are expressed in human respiratory cells that are targets for SARS-CoV-2 infection. Our results suggest that O-glycosylation may influence viral infectivity/tropism by modulating furin cleavage of S and provide mechanistic insight into the potential role of P681 mutations in the recently identified, highly transmissible B.1.1.7 variant.

9.
J Biol Chem ; 295(35): 12525-12536, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669364

RESUMO

Mucin-type O-glycosylation is an essential post-translational modification required for protein secretion, extracellular matrix formation, and organ growth. O-Glycosylation is initiated by a large family of enzymes (GALNTs in mammals and PGANTs in Drosophila) that catalyze the addition of GalNAc onto the hydroxyl groups of serines or threonines in protein substrates. These enzymes contain two functional domains: a catalytic domain and a C-terminal ricin-like lectin domain comprised of three potential GalNAc recognition repeats termed α, ß, and γ. The catalytic domain is responsible for binding donor and acceptor substrates and catalyzing transfer of GalNAc, whereas the lectin domain recognizes more distant extant GalNAc on previously glycosylated substrates. We previously demonstrated a novel role for the α repeat of lectin domain in influencing charged peptide preferences. Here, we further interrogate how the differentially spliced α repeat of the PGANT9A and PGANT9B O-glycosyltransferases confers distinct preferences for a variety of endogenous substrates. Through biochemical analyses and in silico modeling using preferred substrates, we find that a combination of charged residues within the α repeat and charged residues in the flexible gating loop of the catalytic domain distinctively influence the peptide substrate preferences of each splice variant. Moreover, PGANT9A and PGANT9B also display unique glycopeptide preferences. These data illustrate how changes within the noncatalytic lectin domain can alter the recognition of both peptide and glycopeptide substrates. Overall, our results elucidate a novel mechanism for modulating substrate preferences of O-glycosyltransferases via alternative splicing within specific subregions of functional domains.


Assuntos
Simulação por Computador , Proteínas de Drosophila/química , Glicopeptídeos/química , Glicosiltransferases/química , Processamento Alternativo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Glicopeptídeos/genética , Glicosilação , Glicosiltransferases/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Especificidade por Substrato
10.
Proc Natl Acad Sci U S A ; 116(41): 20404-20410, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548401

RESUMO

Polypeptide N-acetylgalactosaminyl transferases (GalNAc-Ts) initiate mucin type O-glycosylation by catalyzing the transfer of N-acetylgalactosamine (GalNAc) to Ser or Thr on a protein substrate. Inactive and partially active variants of the isoenzyme GalNAc-T12 are present in subsets of patients with colorectal cancer, and several of these variants alter nonconserved residues with unknown functions. While previous biochemical studies have demonstrated that GalNAc-T12 selects for peptide and glycopeptide substrates through unique interactions with its catalytic and lectin domains, the molecular basis for this distinct substrate selectivity remains elusive. Here we examine the molecular basis of the activity and substrate selectivity of GalNAc-T12. The X-ray crystal structure of GalNAc-T12 in complex with a di-glycosylated peptide substrate reveals how a nonconserved GalNAc binding pocket in the GalNAc-T12 catalytic domain dictates its unique substrate selectivity. In addition, the structure provides insight into how colorectal cancer mutations disrupt the activity of GalNAc-T12 and illustrates how the rules dictating GalNAc-T12 function are distinct from those for other GalNAc-Ts.


Assuntos
Neoplasias Colorretais/metabolismo , N-Acetilgalactosaminiltransferases/química , N-Acetilgalactosaminiltransferases/metabolismo , Proteínas de Neoplasias/química , Sequência de Aminoácidos , Humanos , Modelos Moleculares , Conformação Proteica
11.
Mol Cell ; 76(1): 44-56.e3, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31444105

RESUMO

Endonuclease V (EndoV) cleaves the second phosphodiester bond 3' to a deaminated adenosine (inosine). Although highly conserved, EndoV homologs change substrate preference from DNA in bacteria to RNA in eukaryotes. We have characterized EndoV from six different species and determined crystal structures of human EndoV and three EndoV homologs from bacteria to mouse in complex with inosine-containing DNA/RNA hybrid or double-stranded RNA (dsRNA). Inosine recognition is conserved, but changes in several connecting loops in eukaryotic EndoV confer recognition of 3 ribonucleotides upstream and 7 or 8 bp of dsRNA downstream of the cleavage site, and bacterial EndoV binds only 2 or 3 nt flanking the scissile phosphate. In addition to the two canonical metal ions in the active site, a third Mn2+ that coordinates the nucleophilic water appears necessary for product formation. Comparison of EndoV with its homologs RNase H1 and Argonaute reveals the principles by which these enzymes recognize RNA versus DNA.


Assuntos
Proteínas de Bactérias/metabolismo , Reparo do DNA , DNA Bacteriano/metabolismo , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Evolução Molecular , Inosina/metabolismo , RNA/metabolismo , Ribonuclease H/metabolismo , Animais , Proteínas Argonautas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , DNA Bacteriano/química , DNA Bacteriano/genética , Desoxirribonuclease (Dímero de Pirimidina)/química , Desoxirribonuclease (Dímero de Pirimidina)/genética , Humanos , Magnésio/metabolismo , Manganês/metabolismo , Camundongos , Conformação de Ácido Nucleico , Conformação Proteica , RNA/química , RNA/genética , Ribonuclease H/química , Ribonuclease H/genética , Relação Estrutura-Atividade , Especificidade por Substrato
12.
Nat Struct Mol Biol ; 25(8): 715-721, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30076410

RESUMO

Catalysis by members of the RNase H superfamily of enzymes is generally believed to require only two Mg2+ ions that are coordinated by active-site carboxylates. By examining the catalytic process of Bacillus halodurans RNase H1 in crystallo, however, we found that the two canonical Mg2+ ions and an additional K+ failed to align the nucleophilic water for RNA cleavage. Substrate alignment and product formation required a second K+ and a third Mg2+, which replaced the first K+ and departed immediately after cleavage. A third transient Mg2+ has also been observed for DNA synthesis, but in that case it coordinates the leaving group instead of the nucleophile as in the case of the RNase H1 hydrolysis reaction. These transient cations have no contact with the enzymes. Other DNA and RNA enzymes that catalyze consecutive cleavage and strand-transfer reactions in a single active site may similarly require cation trafficking coordinated by the substrate.


Assuntos
RNA/metabolismo , Bacillus/enzimologia , Cátions/metabolismo , Hidrólise , Transporte de Íons , Cinética , Ribonuclease H/metabolismo , Especificidade por Substrato
13.
Nat Commun ; 9(1): 3508, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158631

RESUMO

Regulated secretion is an essential process where molecules destined for export are directed to membranous secretory granules, where they undergo packaging and maturation. Here, we identify a gene (pgant9) that influences the structure and shape of secretory granules within the Drosophila salivary gland. Loss of pgant9, which encodes an O-glycosyltransferase, results in secretory granules with an irregular, shard-like morphology, and altered glycosylation of cargo. Interestingly, pgant9 undergoes a splicing event that acts as a molecular switch to alter the charge of a loop controlling access to the active site of the enzyme. The splice variant with the negatively charged loop glycosylates the positively charged secretory cargo and rescues secretory granule morphology. Our study highlights a mechanism for dictating substrate specificity within the O-glycosyltransferase enzyme family. Moreover, our in vitro and in vivo studies suggest that the glycosylation status of secretory cargo influences the morphology of maturing secretory granules.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Vesículas Secretórias/metabolismo , Animais , Drosophila , Proteínas de Drosophila/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Vesículas Secretórias/genética , Especificidade por Substrato
14.
Methods Enzymol ; 592: 283-327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668125

RESUMO

Structures of enzyme-substrate/product complexes have been studied for over four decades but have been limited to either before or after a chemical reaction. Recently using in crystallo catalysis combined with X-ray diffraction, we have discovered that many enzymatic reactions in nucleic acid metabolism require additional metal ion cofactors that are not present in the substrate or product state. By controlling metal ions essential for catalysis, the in crystallo approach has revealed unprecedented details of reaction intermediates. Here we present protocols used for successful studies of Mg2+-dependent DNA polymerases and ribonucleases that are applicable to analyses of a variety of metal ion-dependent reactions.


Assuntos
Cristalografia por Raios X/métodos , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Magnésio/metabolismo , Estabilidade de RNA , Ribonucleases/metabolismo , Animais , Bacillus/química , Bacillus/enzimologia , Bacillus/metabolismo , DNA/química , DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , Desoxirribonuclease (Dímero de Pirimidina)/química , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Humanos , Modelos Moleculares , RNA/química , RNA/metabolismo , Ribonuclease H/química , Ribonuclease H/metabolismo , Ribonucleases/química
15.
Mol Cell ; 59(6): 1025-34, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26384665

RESUMO

Transcription factor IIH (TFIIH) is essential for both transcription and nucleotide excision repair (NER). DNA lesions are initially detected by NER factors XPC and XPE or stalled RNA polymerases, but only bulky lesions are preferentially repaired by NER. To elucidate substrate specificity in NER, we have prepared homogeneous human ten-subunit TFIIH and its seven-subunit core (Core7) without the CAK module and show that bulky lesions in DNA inhibit the ATPase and helicase activities of both XPB and XPD in Core7 to promote NER, whereas non-genuine NER substrates have no such effect. Moreover, the NER factor XPA activates unwinding of normal DNA by Core7, but inhibits the Core7 helicase activity in the presence of bulky lesions. Finally, the CAK module inhibits DNA binding by TFIIH and thereby enhances XPC-dependent specific recruitment of TFIIH. Our results support a tripartite lesion verification mechanism involving XPC, TFIIH, and XPA for efficient NER.


Assuntos
Adutos de DNA/genética , Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição TFIIH/fisiologia , Proteína de Xeroderma Pigmentoso Grupo A/fisiologia , Animais , Cisplatino/química , Adutos de DNA/química , Reparo do DNA , DNA de Cadeia Simples/fisiologia , Proteínas de Ligação a DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Ligação Proteica , Células Sf9 , Spodoptera , Fator de Transcrição TFIIH/química , Proteína de Xeroderma Pigmentoso Grupo A/química
16.
Structure ; 20(8): 1414-24, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22771212

RESUMO

The deubiquitinating module (DUBm) of the SAGA coactivator contains the Ubp8 isopeptidase, Sgf11, Sus1, and Sgf73, which form a highly interconnected complex. Although Ubp8 contains a canonical USP catalytic domain, it is only active when in complex with the other DUBm subunits. The Sgf11 zinc finger (Sgf11-ZnF) binds near the Ubp8 active site and is essential for full activity, suggesting that the Sgf11-ZnF helps maintain the active conformation of Ubp8. We report structural and solution studies showing that deletion of the Sgf11-ZnF destabilizes incorporation of Ubp8 within the DUBm, giving rise to domain swapping with a second complex and misaligning active site residues. Activating mutations in Ubp8 that partially restore activity in the absence of the Sgf11-ZnF promote the monomeric form of the DUBm. Our data suggest an unexpected role for Sgf11 in compensating for the absence of structural features that maintain the active conformation of Ubp8.


Assuntos
Endopeptidases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Fatores de Transcrição/genética , Ubiquitinação
17.
Curr Opin Struct Biol ; 21(6): 767-74, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22014650

RESUMO

Eukaryotic transcriptional coactivators are multi-subunit complexes that both modify chromatin and recognize histone modifications. Until recently, structural information on these large complexes has been limited to isolated enzymatic domains or chromatin-binding motifs. This review summarizes recent structural studies of the SAGA coactivator complex that have greatly advanced our understanding of the interplay between its different subunits. The structure of the four-protein SAGA deubiquitinating module has provided a first glimpse of the larger organization of a coactivator complex, and illustrates how interdependent subunits interact with each other to form an active and functional enzyme complex. In addition, structures of the histone binding domains of ATXN7 and Sgf29 shed light on the interactions with chromatin that help recruit the SAGA complex.


Assuntos
Transativadores/química , Transativadores/genética , Transcrição Gênica , Animais , Sítios de Ligação , Cromatina/metabolismo , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Transativadores/metabolismo
18.
Science ; 328(5981): 1025-9, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20395473

RESUMO

SAGA is a transcriptional coactivator complex that is conserved across eukaryotes and performs multiple functions during transcriptional activation and elongation. One role is deubiquitination of histone H2B, and this activity resides in a distinct subcomplex called the deubiquitinating module (DUBm), which contains the ubiquitin-specific protease Ubp8, bound to Sgf11, Sus1, and Sgf73. The deubiquitinating activity depends on the presence of all four DUBm proteins. We report here the 1.90 angstrom resolution crystal structure of the DUBm bound to ubiquitin aldehyde, as well as the 2.45 angstrom resolution structure of the uncomplexed DUBm. The structure reveals an arrangement of protein domains that gives rise to a highly interconnected complex, which is stabilized by eight structural zinc atoms that are critical for enzymatic activity. The structure suggests a model for how interactions with the other DUBm proteins activate Ubp8 and allows us to speculate about how the DUBm binds to monoubiquitinated histone H2B in nucleosomes.


Assuntos
Endopeptidases/química , Histona Acetiltransferases/química , Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Transativadores/química , Fatores de Transcrição/química , Ubiquitina/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Cristalografia por Raios X , Endopeptidases/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/química , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação , Ubiquitinas/química , Ubiquitinas/metabolismo , Zinco/química , Zinco/metabolismo , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA