Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
IEEE Open J Eng Med Biol ; 5: 88-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487100

RESUMO

Goal: Deep-seated tumors (DST) can be treated using thermoseeds exposed to a radiofrequency magnetic field for performing local interstitial hyperthermia treatment (HT). Several research efforts were oriented to the manufacturing of novel biocompatible magnetic nanostructured thermo-seeds, called magnetic scaffolds (MagS). Several iron-doped bioceramics or magnetic polymers in various formulations are available. However, the crucial evaluation of their heating potential has been carried out with significantly different, lab specific, variable experimental conditions and protocols often ignoring the several error sources and inaccuracies estimation. Methods: This work comments and provides a perspective analysis of an experimental protocol for the estimation methodology of the specific absorption rate (SAR) of MagS for DST HT. Numerical multiphysics simultions have been performed to outline the theoretical framework. After the in silico analysis, an experimental case is considered and tested. Results: From the simulations, we found that large overestimation in the SAR values can be found, due to the axial misplacement in the radiofrequency coil, while the radial misplacement has a lower impact on the estimated SAR value. Conclusions: The averaging of multiple temperature records is needed to reliably and effectively estimate the SAR of MagS for DST HT.

2.
Cancers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339373

RESUMO

The present study focuses on the development of a methodology for evaluating the safety of MNH systems, through the numerical prediction of the induced temperature rise in superficial skin layers due to eddy currents heating under an alternating magnetic field (AMF). The methodology is supported and validated through experimental measurements of the AMF's distribution, as well as temperature data from the torsos of six patients who participated in a clinical trial study. The simulations involved a computational model of the actual coil, a computational model of the cooling system used for the cooling of the patients during treatment, and a detailed human anatomical model from the Virtual Population family. The numerical predictions exhibit strong agreement with the experimental measurements, and the deviations are below the estimated combined uncertainties, confirming the accuracy of computational modeling. This study highlights the crucial role of simulations for translational medicine and paves the way for personalized treatment planning.

3.
Sci Rep ; 13(1): 13784, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612387

RESUMO

Owing to the advancement of wireless technologies, there is a strong public perception of increasing exposure to Radiofrequency (RF) electromagnetic fields (EMF). The aim of this study is to determine the evolution of EMF in the environment, and consequently, human exposure to them, over a period of about two decades, spanning from the end of 2003 until February 2022. The study is based on data collected by two non-ionizing radiation monitoring networks in Greece. The networks consist of fixed EMF sensors that register the RMS electric field value every 6 min, on a 24 h basis. We used the Seasonal-Trend decomposition method using (LOESS), known as the STL method to decompose the time series into trend, seasonal, and noise components. Additionally, since the sensors include frequency filters for separating the cellular frequencies, the recorded data were used to identify the exposure contribution by cellular networks in comparison to other EMF sources. The study indicates that RF-EMF do not explicitly decrease or increase but rather fluctuate over time. Similarly, the contribution of mobile cellular networks to the total field change over time.


Assuntos
Eletricidade , Campos Eletromagnéticos , Humanos , Grécia , Campos Eletromagnéticos/efeitos adversos , Ondas de Rádio/efeitos adversos , Registros
4.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366179

RESUMO

The ever-increasing use of wireless communication systems during the last few decades has raised concerns about the potential health effects of electromagnetic fields (EMFs) on humans. Safety limits and exposure assessment methods were developed and are regularly updated to mitigate health risks. Continuous radiofrequency EMF monitoring networks and in situ measurement campaigns provide useful information about environmental EMF levels and their variations over time and in different microenvironments. In this study, published data from the five largest monitoring networks and from two extensive in situ measurement campaigns in different European countries were gathered and processed. Median electric field values for monitoring networks across different countries lay in the interval of 0.67-1.51 V/m. The median electric field value across different microenvironments, as evaluated from in situ measurements, varied from 0.10 V/m to 1.42 V/m. The differences between networks were identified and mainly attributed to variations in population density. No significant trends in the temporal evolution of EMF levels were observed. The influences of parameters such as population density, type of microenvironment, and height of measurement on EMF levels were investigated.


Assuntos
Telefone Celular , Campos Eletromagnéticos , Humanos , Campos Eletromagnéticos/efeitos adversos , Exposição Ambiental/efeitos adversos , Ondas de Rádio/efeitos adversos , Europa (Continente)
5.
Micromachines (Basel) ; 13(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36363837

RESUMO

The blood−brain barrier is a highly selective semipermeable border that separates blood circulation from the brain and hinders the accumulation of substances in the central nervous system. Hence, a treatment plan aiming to combat neurodegenerative diseases may be restricted. The exploitation of the nose−brain pathway could be a promising bypass method. However, pharmaceutical uptake through the olfactory epithelium is insignificant in terms of treatment, if relying only on fluid dynamic interactions. The main reasons for this are the highly complicated geometry of the nose and the residence time of the substance. The issue can be tackled by using magnetic particles as drug carriers. With the application of an external magnetic field, further control of the particle motion can be achieved, leading to increased uptake. The present work studies this approach computationally by employing magnetite particles with a radius of 7.5 µm while a magnetic field is applied with a permanent neodymium-iron-boron magnet of 9.5×105 A/m magnetization. Through this investigation, the best drug delivery protocol achieved a 2% delivery efficiency. The most significant advantage of this protocol is its straightforward design, which does not require complex equipment, thus rendering the protocol portable and manageable for frequent dosing or at-home administration.

6.
PLoS One ; 17(8): e0263145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040972

RESUMO

The FDA cleared deep transcranial magnetic stimulation (Deep TMS) with the H7 coil for obsessive-compulsive disorder (OCD) treatment, following a double-blinded placebo-controlled multicenter trial. Two years later the FDA cleared TMS with the D-B80 coil on the basis of substantial equivalence. In order to investigate the induced electric field characteristics of the two coils, these were placed at the treatment position for OCD over the prefrontal cortex of a head phantom, and the field distribution was measured. Additionally, numerical simulations were performed in eight Population Head Model repository models with two sets of conductivity values and three Virtual Population anatomical head models and their homogeneous versions. The H7 was found to induce significantly higher maximal electric fields (p<0.0001, t = 11.08) and to stimulate two to five times larger volumes in the brain (p<0.0001, t = 6.71). The rate of decay of electric field with distance is significantly slower for the H7 coil (p < 0.0001, Wilcoxon matched-pairs test). The field at the scalp is 306% of the field at a 3 cm depth with the D-B80, and 155% with the H7 coil. The H7 induces significantly higher intensities in broader volumes within the brain and in specific brain regions known to be implicated in OCD (dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and pre-supplementary motor area (pre-SMA)) compared to the D-B80. Significant field ≥ 80 V/m is induced by the H7 (D-B80) in 15% (1%) of the dACC, 78% (29%) of the pre-SMA, 50% (20%) of the dlPFC, 30% (12%) of the OFC and 15% (1%) of the IFG. Considering the substantial differences between the two coils, the clinical efficacy in OCD should be tested and verified separately for each coil.


Assuntos
Córtex Motor , Transtorno Obsessivo-Compulsivo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cabeça , Humanos , Córtex Motor/fisiologia , Transtorno Obsessivo-Compulsivo/terapia , Estimulação Magnética Transcraniana
7.
Animals (Basel) ; 12(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35405819

RESUMO

Biomedical measurements by specialized technological equipment have been used in farm animals to collect information about nutrition, behavior and welfare. This study investigates the relation of semen quality (CASA analysis, viability, morphology, membrane biochemical activity and DNA fragmentation) with boar behavior during ejaculation. Sensors were placed on the boar's body. Movement features were collected using an inertial measurement unit (IMU), comprising an accelerometer, a gyroscope and a magnetometer. Boar, scrotal and dummy temperatures were measured by an infrared (IR) camera and an IR thermometer, while the face salivation of the boar was recorded by a moisture meter (also based on IR technology). All signals and images were logged on a mobile device (smartphone or tablet) using a Bluetooth connection and then transferred wirelessly to the cloud. The data files were then processed using scripts in MATLAB 2021a (MathWorks, Natick, Massachusetts) to derive the necessary indices. Ninety-four ejaculates from five boars were analyzed in this study. The statistical analysis was performed in the Statistics and Machine Learning Toolbox of MATLAB 2021a using a linear mixed effects model. Significant and strong negative correlations (R2 > 0.5, p ≤ 0.05) were observed between boar, dummy and scrotal temperature with the progressive, rapid and slow movement of spermatozoa, VCL (curvilinear velocity), VSL (straight line velocity) and ALH (amplitude of lateral head displacement) kinematics. The volume of the ejaculate was correlated with the scrotal and dummy temperature. Dummy's temperature was negatively correlated with BCF (beat/cross-frequency), viability and total time of ejaculation, while it was positively correlated with abnormal morphology. Body temperature was negatively correlated with BCF. Positive correlations were noticed between VAP (average path velocity) and total time of ejaculation with body acceleration features, as well as between the overall dynamic body acceleration (ODBA) and total time of ejaculation. In conclusion, the use of biomedical sensors can support the evaluation of boar sperm production capacity, providing valuable information about semen quality.

8.
Nanomaterials (Basel) ; 12(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35159900

RESUMO

Unavoidably, magnetic particle hyperthermia is limited by the unwanted heating of the neighboring healthy tissues, due to the generation of eddy currents. Eddy currents naturally occur, due to the applied alternating magnetic field, which is used to excite the nanoparticles in the tumor and, therefore, restrict treatment efficiency in clinical application. In this work, we present two simply applicable methods for reducing the heating of healthy tissues by simultaneously keeping the heating of cancer tissue, due to magnetic nanoparticles, at an adequate level. The first method involves moving the induction coil relative to the phantom tissue during the exposure. More specifically, the coil is moving symmetrically-left and right relative to the specimen-in a bidirectional fashion. In this case, the impact of the maximum distance (2-8 cm) between the coil and the phantom is investigated. In the second method, the magnetic field is applied intermittently (in an ON/OFF pulsed mode), instead of the continuous field mode usually employed. The parameters of the intermittent field mode, such as the time intervals (ON time and OFF time) and field amplitude, are optimized based on the numerical assessment of temperature increase in healthy tissue and cancer tissue phantoms. Different ON and OFF times were tested in the range of 25-100 s and 50-200 s, respectively, and under variable field amplitudes (45-70 mT). In all the protocols studied here, the main goal is to generate inside the cancer tissue phantom the maximum temperature increase, possible (preferably within the magnetic hyperthermia window of 4-8 °C), while restricting the temperature increase in the healthy tissue phantom to below 4 °C, signifying eddy current mitigation.

9.
Vet Sci ; 10(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669010

RESUMO

Farm animals behavior research uses video cameras, mainly for visual observation and recording. The purpose of this feasibility study was to enrich the predictable methods of boar semen production capacity by correlating sperm variables with the scrotal contractions (SC) frequency and intensity. A video camera was used to record the reaction of the scrotum during ejaculation. The respective collected ejaculates were evaluated and semen parameters, such as viability, morphology, membranes functional integrity and kinematics, were determined. The camera recorded the scrotal contractions/relaxations and the video was handled by the Image Processing Toolbox of Matlab (Mathworks Inc., Natick, MA, USA). The SC intensity was verified as a percentage change in the scrotum size among the video frames of maximum contraction and relaxation. The archived data from the frames were analyzed statistically, using a linear mixed effects model that involved sperm assessed parameters. Correlations of the SC intensity with the average path velocity, VAP (R2 = 0.591, p = 0.043) and with the percentage of the cytoplasmic droplets (R2 = 0.509, p = 0.036) were noticed. Previous studies reported the positive correlation of VAP with the number of live-born piglets. In conclusion, video monitoring of the boar scrotal function during ejaculation is useful, but more research is needed to establish its appropriateness as a supplementary method for the prognosis of boar ability to produce high-quality semen.

11.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209300

RESUMO

We present a simulation study investigating the feasibility of electrical impedance tomography (EIT) as a low cost, noninvasive technique for hyperthermia (HT) treatment monitoring and adaptation. Temperature rise in tissues leads to perfusion and tissue conductivity changes that can be reconstructed in 3D by EIT to noninvasively map temperature and perfusion. In this study, we developed reconstruction methods and investigated the achievable accuracy of EIT by simulating HT treatmentlike scenarios, using detailed anatomical models with heterogeneous conductivity distributions. The impact of the size and location of the heated region, the voltage measurement signal-to-noise ratio, and the reference model personalization and accuracy were studied. Results showed that by introducing an iterative reconstruction approach, combined with adaptive prior regions and tissue-dependent penalties, planning-based reference models, measurement-based reweighting, and physics-based constraints, it is possible to map conductivity-changes throughout the heated domain, with an accuracy of around 5% and cm-scale spatial resolution. An initial exploration of the use of multifrequency EIT to separate temperature and perfusion effects yielded promising results, indicating that temperature reconstruction accuracy can be in the order of 1 ∘C. Our results suggest that EIT can provide valuable real-time HT monitoring capabilities. Experimental confirmation in real-world conditions is the next step.

12.
Regul Toxicol Pharmacol ; 125: 104982, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34214611

RESUMO

The Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) was requested by the European Commission (EC) to provide a scientific opinion on the safety of breast implants in relation to anaplastic large cell lymphoma (ALCL). There are several types of textured breast implants; surface textures of breast implants are not all manufactured in the same way, and breast implants with diverse surface textures may also present different benefits. The magnitude of the risk per type of textured implant is difficult to establish due to the low incidence of the breast implants associated anaplastic large cell lymphoma (BIA-ALCL). Therefore, risk assessments per implant type are needed. Overall SCHEER considers that there is a moderate weight of evidence for a causal relationship between textured breast implants and BIA-ALCL, particularly in relation to implants with an intermediate to high surface roughness.The pathogenic mechanisms are not fully elucidated; current hypotheses include genetic drivers, chronic inflammation resulting either from bacterial contamination, shell shedding of particulates, or shell surface characteristics leading to friction, or by implant associated reactive compounds. Reporting of new BIA-ALCL cases by the national clinical registries is critically important to obtain a better estimate of the risk of BIA-ALCL for patients with a breast implant.


Assuntos
Implantes de Mama/estatística & dados numéricos , Linfoma Anaplásico de Células Grandes/epidemiologia , Causalidade , Humanos , Medição de Risco , Fatores de Risco , Fatores de Tempo
13.
Bioelectromagnetics ; 42(7): 562-574, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34289515

RESUMO

Several recent theoretical dosimetric studies above 6 GHz apply generic layered skin models. For this frequency range, new experimental phantoms for over-the-air performance of wireless devices were proposed that simulate the impedance matching effects of the stratum corneum layer (SCL) with a low-loss coating layer. The aim of this study was to verify the skin models by comparing their reflection coefficients S11 with measurements of 37 human volunteers (21 males, 16 females, 5-80 years) at 21 body locations (10 at palm, 11 at arm/face) with different SCL thicknesses, using waveguides covering frequencies from 40 to 110 GHz. Such measurements were also carried out with the phantom material. The statistical analysis showed strong evidence that S11 depends on the SCL thickness and no evidence that S11 depends on sex. The measured S11 values for thin and thick skin can be represented by SCL layers of 15 and 140 µm, respectively. These values correspond well to the assumptions of previous studies. (The cohort did not include volunteers doing heavy manual work.) The phantom material mimics the matching effect of the SCL with deviations from the waveguide measurements of less than 0.85 dB (22%), which confirms the suitability of layered phantoms to represent the electromagnetic reflection/absorption of human skin. © 2021 Bioelectromagnetics Society.


Assuntos
Fenômenos Eletromagnéticos , Pele , Feminino , Humanos , Masculino , Modelos Teóricos , Imagens de Fantasmas , Radiometria
14.
Bioelectromagnetics ; 42(6): 484-490, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34130354

RESUMO

The introduction of new dosimetric quantities, in particular, epithelial or absorbed power density for frequencies above 6 GHz, in exposure guidelines and safety standards requires the development of new experimental assessment procedures for compliance testing. In this study, we propose to approximate the peak spatial-average absorbed power density (psSab ) using the same measured data and algorithms that are used for determining the peak spatial-average specific absorption rate psSAR, which is currently limited to frequencies up to 10 GHz. The uncertainty component for the transformation of psSAR to psSab was evaluated as less than 0.55 dB (13.5%) for any source as close as 0.02 λ from the tissue simulating media. The approach is easy to implement and allows determining compliance with the basic restrictions of the latest safety guidelines. In the next project, we will expand dosimetric probes, phantoms, and procedures for frequencies above 10 GHz. © 2021 Bioelectromagnetics Society.


Assuntos
Campos Eletromagnéticos , Radiometria , Algoritmos , Imagens de Fantasmas
15.
Magn Reson Med ; 86(4): 2156-2164, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080721

RESUMO

PURPOSE: The risks of RF-induced heating of active implantable medical device (AIMD) leads during MR examinations must be well understood and realistically assessed. In this study, we evaluate the potential additional risks of broken and abandoned (cut) leads. METHODS: First, we defined a generic AIMD with a metallic implantable pulse generator (IPG) and a 100-cm long lead containing 1 or 2 wires. Next, we numerically estimated the deposited in vitro lead-tip power for an intact lead, as well as with wire breaks placed at 10 cm intervals. We studied the effect of the break size (wire gap width), as well as the presence of an intact wire parallel to the broken wire, and experimentally validated the numeric results for the configurations with maximum deposited in vitro lead-tip power. Finally, we performed a Tier 3 assessment of the deposited in vivo lead-tip power for the intact and broken lead in 4 high resolution virtual population anatomic models for over 54,000 MR examination scenarios. RESULTS: The enhancement of the deposited lead-tip power for the broken leads, compared to the intact lead, reached 30-fold in isoelectric exposure, and 16-fold in realistic clinical exposures. The presence of a nearby intact wire, or even a nearby broken wire, reduced this enhancement factor to <7-fold over the intact lead. CONCLUSION: Broken and abandoned leads can pose increased risk of RF-induced lead-tip heating to patients undergoing MR examinations. The potential enhancement of deposited in vivo lead-tip power depends on location and type of the wire break, lead design, and clinical routing of the lead, and should be carefully considered when performing risk assessment for MR examinations and MR conditional labeling.


Assuntos
Calefação , Imageamento por Ressonância Magnética , Temperatura Alta , Humanos , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Próteses e Implantes/efeitos adversos , Ondas de Rádio/efeitos adversos
16.
Animals (Basel) ; 11(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916752

RESUMO

The aim of the study was to investigate the effect of iron oxide (Fe) and silver (Ag) nanoparticles (NPs) on ram semen. A skim milk extender without antibiotics was used as a diluent of 21 ejaculates (8 rams; 2-3 ejaculates/ram). The groups of control (C; semen without NPs), Fe NPs (3.072 mg Fe3O4/mL semen), and Ag NPs (2.048 mg Ag-Fe/mL semen) were incubated (15 °C; 30 min), and then a magnetic field was used for NPs' removal. Standard microbiological procedures were performed for all groups. Post-treated samples were stored (15 °C) for 24 h, and sperm variables (kinetics by computer assisted sperm analysis (CASA); viability; morphology; HOST; DNA integrity) were evaluated at 6 and 24 h. Semen data were analyzed by a mixed model for repeated measures and microbiological data with Student's t-test for paired samples. At 6 h of storage, VCL and rapid movement-spermatozoa, and at 24 h, total/progressive motility and amplitude of lateral head displacement (ALH) were significantly decreased in group Ag compared to control. In group Fe, progressive/rapid movement-spermatozoa were significantly lower compared to control after 24 h of storage. Only in group Ag was a significant reduction of total bacterial count revealed. In conclusion, the examined Fe NPs demonstrated slight antibacterial effect, while the examined Ag NPs provided higher antibacterial properties accompanied by cytotoxicity.

17.
Int J Hyperthermia ; 38(1): 511-522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33784924

RESUMO

Objective: In magnetic particle hyperthermia, a promising least-invasive cancer treatment, malignant regions in proximity with magnetic nanoparticles undergo heat stress, while unavoidably surrounding healthy tissues may also suffer from heat either directly or indirectly by the induced eddy currents, due to the developed electric fields as well. Here, we propose a facile upgrade of a typical magnetic particle hyperthermia protocol, to selectively mitigate eddy currents' heating without compromising the beneficial role of heating in malignant regions.Method: The key idea is to apply the external magnetic field intermittently (in an ON/OFF pulse mode), instead of the continuous field mode typically applied. The parameters of the intermittent field mode, such as time intervals (ON time: 25-100 s, OFF time: 50-200 s, Duty Cycle:16-100%) and field amplitude (30-70 mT) are optimized based on evaluation on healthy tissue and cancer tissue phantoms. The goal is to sustain in cancer tissue phantom the maximum temperature increase (preferably within 4-8°C above body temperature of 37°C), while in the healthy tissue phantom temperature variation is suppressed far below the 4°C dictating the eddy current mitigation.Results: Optimum conditions of intermittent field (ON/OFF: 50/100 in s, Duty Cycle: 33%, magnetic field: 45mT) are then examined in ex-vivo samples verifying the successful suppression of eddy currents. Simultaneously, a well-elaborated theoretical approach provides a rapid calculation of temperature increase and, furthermore, the ability to quickly simulate a variety of duty cycle times and field controls may save experimental time.Conclusion: Eventually, the application of an intermittent field mode in a magnetic particle hyperthermia protocol, succeeds in eddy current mitigation in surrounding tissues and allows for the application of larger field amplitudes that may augment hyperthermia efficiency without objecting typical biomedical applicability field constraints such as Brezovich criterion.


Assuntos
Hipertermia Induzida , Humanos , Hipertermia , Campos Magnéticos , Magnetismo , Temperatura
18.
Nanomaterials (Basel) ; 11(2)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672340

RESUMO

Attenuation of the unwanted heating of normal tissues due to eddy currents presents a major challenge in magnetic particle hyperthermia for cancer treatment. Eddy currents are a direct consequence of the applied alternating magnetic field, which is used to excite the nanoparticles in the tumor and have been shown to limit treatment efficacy in clinical trials. To overcome these challenges, this paper presents simple, clinically applicable, numerical approaches which reduce the temperature increase due to eddy currents in normal tissue and simultaneously retain magnetic nanoparticles heating efficiency within the tumor. More specifically, two protocols are examined which involve moving the heating source, an electromagnetic coil, relative to a tumor-bearing phantom tissue during the exposure. In the first protocol, the linear motion of the coil on one side with respect to the hypothesized tumor location inside the phantom is simulated. The estimated maximum temperature increase in the healthy tissue and tumor is reduced by 12% and 9%, respectively, compared to a non-moving coil, which is the control protocol. The second technique involves a symmetrical variation of the first one, where the coil is moving left and right of the phantom in a bidirectional fashion. This protocol is considered as the optimum one, since the estimated maximum temperature rise of the healthy tissue and tumor is reduced by 25% and 1%, respectively, compared to the control protocol. Thus, the advantages of a linearly moving coil are assessed through tissue sparing, rendering this technique suitable for magnetic particle hyperthermia treatment.

19.
Radiat Prot Dosimetry ; 192(1): 113-118, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33270899

RESUMO

The latest electromagnetic safety guidelines define transmitted or epithelial power density as the basic restriction above 6 GHz. In this note, we derive an approximation for a conservative transmission coefficient for quasi plane wave incidence as a function of the frequency for the normal component of the Poynting vector with respect to the evaluation plane or tissue surface |Sz inc| and for its modulus ||Sinc||. The maximum transmission coefficient for the normal component of the Poynting vector ${\boldsymbol{T}}_{\mathbf{z}}^{\mathbf{max}}$ is 1 independent of tissue composition and frequency. Approximations of ${\boldsymbol{T}}_{\mathbf{total}}^{\mathbf{max}}$ normalized to ||Sinc|| for thin and thick stratum corneum are provided allowing higher exposures. These approximations allow to conservatively demonstrate compliance with basic restrictions when quasi plane-wave conditions are locally satisfied and enhancement effects of standing waves between source and body can be neglected. The reported results are important to regulators and standardization bodies regarding revisions of compliance requirements and safety guidelines.


Assuntos
Pele , Incidência
20.
Artigo em Inglês | MEDLINE | ID: mdl-33232971

RESUMO

To compare extremely low-frequency magnetic field (ELF-MF) exposure in the general population in low- and middle-income countries (LMICs) with high-income countries (HIC), we carried out a systematic literature search resulting in 1483 potentially eligible articles; however, only 25 studies could be included in the qualitative synthesis. Studies showed large heterogeneity in design, exposure environment and exposure assessment. Exposure assessed by outdoor spot measurements ranged from 0.03 to 4µT. Average exposure by indoor spot measurements in homes ranged from 0.02 to 0.4µT. Proportions of homes exposed to a threshold of ≥0.3µT were many times higher in LMICs compared to HIC. Based on the limited data available, exposure to ELF-MF in LMICs appeared higher than in HIC, but a direct comparison is hampered by a lack of representative and systematic monitoring studies. Representative measurement studies on residential exposure to ELF-MF are needed in LMICs together with better standardisation in the reporting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA