Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982362

RESUMO

The photosynthetically active green leaf (GL) and non-active white leaf (WL) tissues of variegated Pelargonium zonale provide an excellent model system for studying processes associated with photosynthesis and sink-source interactions, enabling the same microenvironmental conditions. By combining differential transcriptomics and metabolomics, we identified the main differences between these two metabolically contrasting tissues. Genes related to photosynthesis and associated pigments, the Calvin-Benson cycle, fermentation, and glycolysis were strongly repressed in WL. On the other hand, genes related to nitrogen and protein metabolism, defence, cytoskeletal components (motor proteins), cell division, DNA replication, repair and recombination, chromatin remodelling, and histone modifications were upregulated in WL. A content of soluble sugars, TCA intermediates, ascorbate, and hydroxybenzoic acids was lower, while the concentration of free amino acids (AAs), hydroxycinnamic acids, and several quercetin and kaempferol glycosides was higher in WL than in GL. Therefore, WL presents a carbon sink and depends on photosynthetic and energy-generating processes in GL. Furthermore, the upregulated nitrogen metabolism in WL compensates for the insufficient energy from carbon metabolism by providing alternative respiratory substrates. At the same time, WL serves as nitrogen storage. Overall, our study provides a new genetic data resource for the use of this excellent model system and for ornamental pelargonium breeding and contributes to uncovering molecular mechanisms underlying variegation and its adaptive ecological value.


Assuntos
Pelargonium , Pelargonium/genética , Pelargonium/metabolismo , Transcriptoma , Melhoramento Vegetal , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768594

RESUMO

Plants are inevitably exposed to extreme climatic conditions that lead to a disturbed balance between the amount of absorbed energy and their ability to process it. Variegated leaves with photosynthetically active green leaf tissue (GL) and photosynthetically inactive white leaf tissue (WL) are an excellent model system to study source-sink interactions within the same leaf under the same microenvironmental conditions. We demonstrated that under excess excitation energy (EEE) conditions (high irradiance and lower temperature), regulated metabolic reprogramming in both leaf tissues allowed an increased consumption of reducing equivalents, as evidenced by preserved maximum efficiency of photosystem II (ФPSII) at the end of the experiment. GL of the EEE-treated plants employed two strategies: (i) the accumulation of flavonoid glycosides, especially cyanidin glycosides, as an alternative electron sink, and (ii) cell wall stiffening by cellulose, pectin, and lignin accumulation. On the other hand, WL increased the amount of free amino acids, mainly arginine, asparagine, branched-chain and aromatic amino acids, as well as kaempferol and quercetin glycosides. Thus, WL acts as an important energy escape valve that is required in order to maintain the successful performance of the GL sectors under EEE conditions. Finally, this role could be an adaptive value of variegation, as no consistent conclusions about its ecological benefits have been proposed so far.


Assuntos
Carbono , Nitrogênio , Carbono/metabolismo , Nitrogênio/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/metabolismo , Glicosídeos/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768765

RESUMO

Global climate change has a detrimental effect on plant growth and health, causing serious losses in agriculture. Investigation of the molecular mechanisms of plant responses to various environmental pressures and the generation of plants tolerant to abiotic stress are imperative to modern plant science. In this paper, we focus on the application of the well-established technology CRISPR/Cas9 genome editing to better understand the functioning of the intrinsically disordered protein DSS1 in plant response to oxidative stress. The Arabidopsis genome contains two highly homologous DSS1 genes, AtDSS1(I) and AtDSS1(V). This study was designed to identify the functional differences between AtDSS1s, focusing on their potential roles in oxidative stress. We generated single dss1(I) and dss1(V) mutant lines of both Arabidopsis DSS1 genes using CRISPR/Cas9 technology. The homozygous mutant lines with large indels (dss1(I)del25 and dss1(V)ins18) were phenotypically characterized during plant development and their sensitivity to oxidative stress was analyzed. The characterization of mutant lines revealed differences in root and stem lengths, and rosette area size. Plants with a disrupted AtDSS1(V) gene exhibited lower survival rates and increased levels of oxidized proteins in comparison to WT plants exposed to oxidative stress induced by hydrogen peroxide. In this work, the dss1 double mutant was not obtained due to embryonic lethality. These results suggest that the DSS1(V) protein could be an important molecular component in plant abiotic stress response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistemas CRISPR-Cas , Edição de Genes/métodos , Estresse Oxidativo/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
4.
Front Plant Sci ; 14: 1039053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818840

RESUMO

Essential micronutrients belonging to the transition metals, such as Fe and Cu, are indispensable for plant growth and stress tolerance; however, when present in excess, they can become potentially dangerous producers of reactive oxygen species. Therefore, their homeostases must be strictly regulated. Both microelement deficiencies and elevated concentrations of heavy metals in the soil are global problems that reduce the nutritional value of crops and seriously affect human health. Silicon, a beneficial element known for its protective properties, has been reported to alleviate the symptoms of Cu toxicity and Fe deficiency stress in plants; however, we are still far from a comprehensive understanding of the underlying molecular mechanisms. Although Si-mediated mitigation of these stresses has been clearly demonstrated for some species, the effects of Si vary depending on plant species, growing conditions and experimental design. In this review, the proposed mechanistic models explaining the effect of Si are summarized and discussed. Iron and copper compete for the common metal transporters and share the same transport routes, hence, inadequate concentration of one element leads to disturbances of another. Silicon is reported to beneficially influence not only the distribution of the element supplied below or above the optimal concentration, but also the distribution of other microelements, as well as their molar ratios. The influence of Si on Cu immobilization and retention in the root, as well as Si-induced Fe remobilization from the source to the sink organs are of vital importance. The changes in cellular Cu and Fe localization are considered to play a crucial role in restoring homeostasis of these microelements. Silicon has been shown to stimulate the accumulation of metal chelators involved in both the mobilization of deficient elements and scavenging excess heavy metals. Research into the mechanisms of the ameliorative effects of Si is valuable for reducing mineral stress in plants and improving the nutritional value of crops. This review aims to provide a thorough and critical overview of the current state of knowledge in this field and to discuss discrepancies in the observed effects of Si and different views on its mode of action.

5.
Ecotoxicol Environ Saf ; 210: 111882, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33418153

RESUMO

Changes in the environment as a result of industrialisation and urbanisation impact negatively on plant growth and crop production. Cadmium (Cd) is one of the most dangerous metals that enters the food chain, with toxic effects on plants and human health. This study evaluated the potential of Silene sendtneri as a novel hyperaccumulator and the role of seed priming in tolerance and accumulation rate of Cd. The effect of different priming agents on germination performance, root growth, seedling development, metal uptake and accumulation, antioxidant defences including enzymatic and non-enzymatic antioxidants has been assessed. Seed priming using silicic acid, proline alone or in combination with salicylic acid- enhanced germination, seedling development, and root growth under Cd stress. The same priming treatments induced an increase of water content in shoots and roots when plants were exposed to Cd. The enzymatic antioxidant response was specific for the priming agent used. An increase in ferulic acid and rutin in shoots was related to the increase of Cd concentration in the medium. The concentration of malic and oxalic acid increased significantly in shoots of plants grown on high Cd concentrations compared to low Cd concentrations. Silene sendtneri can accumulate significant levels of Cd with enhanced accumulation rate and tolerance when seeds are primed. The best results are obtained by seed priming using 1% silicic acid, proline and salicylic acid.


Assuntos
Cádmio/administração & dosagem , Prolina/farmacologia , Ácido Salicílico/farmacologia , Silene/efeitos dos fármacos , Ácido Silícico/farmacologia , Poluentes do Solo/administração & dosagem , Bioacumulação , Tolerância a Medicamentos , Germinação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Silene/crescimento & desenvolvimento , Silene/metabolismo
6.
Protoplasma ; 258(4): 779-792, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33404921

RESUMO

DSS1 is a small protein, highly conserved across different species. As a member of the intrinsically disordered protein family, DSS1 interacts with different protein partners, thus forming complexes involved in diverse biological mechanisms: DNA repair, regulation of protein homeostasis, mRNA export, etc. Additionally, DSS1 has a novel intriguing role in the post-translational protein modification named DSSylation. Oxidatively damaged proteins are targeted for removal with DSS1 and then degraded by proteasome. Yet, DSS1 involvement in the maintenance of genome integrity through homologous recombination is the only function well studied in Arabidopsis research. The fact that animal DSS1 shows wide multifunctionality imposes a need to investigate the additional roles of two Arabidopsis thaliana DSS1 homologs. Having in mind the universality of various biological processes, we considered the possibility of plant DSS1 involvement in cellular homeostasis maintenance during stress exposure. Using real-time PCR and immunoblot analysis, we investigated the profiles of DSS1 gene and protein expression under oxidative stress. We grew and selected the homozygous Arabidopsis mutant line, carrying the T-DNA intron insertion in the DSS1(V) gene. The mutant line was phenotypically described during plant development, and its sensitivity to oxidative stress was characterized. This is the first report which indicates that plant DSS1 gene expression has an altered profile under the influence of oxidative stress. dss1(V)-/- plants showed an increased sensitivity to oxidative stress, germinated faster than WT, but generally showed developmental delay in further stages. Our results indicate that the DSS1 protein could be a crucial player in the molecular mechanisms underlying plant abiotic stress responses.


Assuntos
Arabidopsis , Proteínas Intrinsicamente Desordenadas , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Estresse Oxidativo/genética , Estresse Fisiológico
7.
Front Microbiol ; 11: 601616, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335521

RESUMO

In this study, for the first time, the comprehensive analysis of antiproliferative and antioxidant activities of ramson, followed by the analysis of its associated microbiota and health-promoting effects of lactic acid bacteria (LAB), was performed. Ramson (Allium ursinum) is recognized as a medicinal plant with a long history of use in traditional medicine due to its antimicrobial and antioxidant activity. In this study the influence of in vitro gastrointestinal digestion on the cytotoxic activity of A. ursinum extracts against human malignant cell lines was demonstrated. Seven sulfur compounds, the degradation products of thiosulfinates, including diallyl disulfide were shown to inhibit proliferation of malignant cells by inducing accumulation within G2/M phase as well as to induce apoptosis through activation of caspase-3 and mitochondrial signaling pathway. Further, the A. ursinum microbiota, particularly LAB with potential probiotic effects, was analyzed by culture-dependent method and culture-independent method [denaturing gradient gel electrophoresis (DGGE)]. The obtained results revealed that the most abundant genera were Streptococcus, Lactobacillus, and Bacillus. The Lactobacillus genus was mainly represented by L. fermentum. The pulsed-field gel electrophoresis (PFGE) analysis revealed the presence of two PFGE pulsotypes. The probiotic potential of the strain L. fermentum BGSR163 belonging to PFGE pulsotype 1 and the strain L. fermentum BGSR227 belonging to the PFGE pulsotype 2 was characterized. The results revealed that both strains are safe for human use, successfully survive the simulated gastrointestinal conditions, have potential to transiently colonize the gastrointestinal tract (GIT) and have a protective immunomodulatory effect, inducing the production of proinflammatory cytokine IL17 and regulatory cytokine IL10, while decreasing the production of proinflammatory cytokine IFN-γ. In conclusion, the results of this study suggest that consumption of A. ursinum might have health-promoting properties, including anticancer effects, while L. fermentum strains isolated from A. ursinum leaves could be used as probiotics for human consumption.

8.
Plants (Basel) ; 8(12)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795296

RESUMO

Copper (Cu) toxicity in plants may lead to iron (Fe), zinc (Zn) and manganese (Mn) deficiencies. Here, we investigated the effect of Si and Fe supply on the concentrations of micronutrients and metal-chelating amino acids nicotianamine (NA) and histidine (His) in leaves of cucumber plants exposed to Cu in excess. Cucumber (Cucumis sativus L.) was treated with 10 µM Cu, and additional 100 µM Fe or/and 1.5 mM Si for five days. High Cu and decreased Zn, Fe and Mn concentrations were found in Cu treatment. Additional Fe supply had a more pronounced effect in decreasing Cu accumulation and improving the molar ratio between micronutrients as compared to the Si supply. However, the simultaneous supply of Fe and Si was the most effective treatment in alleviation of Cu-induced deficiency of Fe, Zn and Mn. Additional Fe supply increased the His but not NA concentration, while Si supply significantly increased both NA and His whereby the NA:Cu and His:Cu molar ratios exceeded the control values indicating that Si recruits Cu-chelation to achieve Cu tolerance. In conclusion, Si-mediated alleviation of Cu toxicity was directed toward Cu tolerance while Fe-alleviative effect was due to a dramatic decrease in Cu accumulation.

9.
J Microencapsul ; 36(8): 693-703, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31549532

RESUMO

Aim: Microencapsulation of chokeberry extracts was performed in order to improve functionality, stability, and bioavailability of extracted polyphenols.Methods: Chokeberry fruits and juice by-product (waste) extracts were spray-dried by using two carriers, maltodextrin and skimmed milk. Morphological and physicochemical characteristics of the obtained powders were analysed. In vitro simulated digestion model was used as an indicator of polyphenolics bioavailability.Results: The moisture content varied between 3.39 and 4.61%, zeta potential had negative values (35-39 mV), maltodetrin powders were smaller (4.27-5.12 µm) compared to skimmed ones (8.50-11.01 µm). All microparticles exhibited high encapsulation efficiency of total polyphenols and anthocyanins (73-97% and 63-96%, respectively). For both extract types, maltodextrin powders released higher phenolics content compared to skimmed milk. During in vitro digestion, maltodextrin exhibited a higher protective effect on both active compounds.Conclusion: Taking into account the obtained results, chokeberry polyphenols stability might be improved using spray drying technique, and maltodextrin showed better properties.


Assuntos
Dessecação/métodos , Composição de Medicamentos/métodos , Leite/química , Photinia/química , Polifenóis/química , Polissacarídeos/química , Animais , Disponibilidade Biológica , Polifenóis/farmacocinética , Pós/análise , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Front Plant Sci ; 10: 416, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024590

RESUMO

The beneficial effects of silicon (Si) have been shown on plants using reduction-based strategy for iron (Fe) acquisition. Here we investigated the influence of Si on Fe deficiency stress alleviation in barley (Hordeum vulgare), a crop plant which uses the chelation-based strategy for Fe acquisition. Analyses of chlorophyll content, ROS accumulation, antioxidative status, concentrations of Fe and other micronutrients, along with the expression of Strategy II genes were studied in response to Si supply. Si successfully ameliorated Fe deficiency in barley, diminishing chlorophyll and biomass loss, and improving the activity of antioxidative enzymes, resulting in lowered reactive oxidative species accumulation in the youngest leaves. Alleviation of Fe deficiency stress correlated well with the Si-induced increase of Fe content in the youngest leaves, while it was decreased in root. Moreover, Si nutrition lowered accumulation of other micronutrients in the youngest leaves of Fe deprived plants, by retaining them in the root. On the transcriptional level, Si led to an expedient increase in the expression of genes involved in Strategy II Fe acquisition in roots at the early stage of Fe deficiency stress, while decreasing their expression in a prolonged stress response. Expression of Strategy II genes was remarkably upregulated in the leaves of Si supplied plants. This study broadens the perspective of mechanisms of Si action, providing evidence for ameliorative effects of Si on Strategy II plants, including its influence on accumulation and distribution of microelements, as well as on the expression of the Strategy II genes.

11.
Front Microbiol ; 9: 990, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867888

RESUMO

After heavy exposure of Ustilago maydis cells to clastogens, a great increase in viability was observed if the treated cells were kept under starvation conditions. This restitution of viability is based on cell multiplication at the expense of the intracellular compounds freed from the damaged cells. Analysis of the effect of the leaked material on the growth of undamaged cells revealed opposing biological activity, indicating that U. maydis must possess cellular mechanisms involved not only in reabsorption of the released compounds from external environment but also in contending with their treatment-induced toxicity. From a screen for mutants defective in the restitution of viability, we identified four genes (adr1, did4, kel1, and tbp1) that contribute to the process. The mutants in did4, kel1, and tbp1 exhibited sensitivity to different genotoxic agents implying that the gene products are in some overlapping fashion involved in the protection of genome integrity. The genetic determinants identified by our analysis have already been known to play roles in growth regulation, protein turnover, cytoskeleton structure, and transcription. We discuss ecological and evolutionary implications of these results.

12.
Ticks Tick Borne Dis ; 8(3): 391-395, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28119040

RESUMO

Tick bites often go unnoticed, so specific reliable tests are needed to confirm them for prompt diagnosis and treatment of tick-borne diseases. One of the promising candidates for developing such a test is AV422, a tick saliva protein that has been conserved across tick genera. In this study, we demonstrate the potential of the AV422 homologue from Ixodes ricinus to be used for tick bite detection for both Prostriata and Metastriata. We expressed recombinant (r) I. ricinus (Ir) AV422 in E. coli and subjected it to Western blot analysis using rat antibodies to saliva proteins of both I. ricinus (Prostriata) and Dermacentor reticulatus (Metastriata) larvae. Our data demonstrate that rIrAV422 specifically bound to antibodies from sera of rats used for both I. ricinus and D. reticulatus larvae feeding, but not to antibodies from control serum, emphasizing its specificity since tick bites were the sole cause of sera reactivity.


Assuntos
Dermacentor , Proteínas de Insetos/imunologia , Ixodes , Proteínas e Peptídeos Salivares/imunologia , Picadas de Carrapatos/diagnóstico , Animais , Anticorpos/sangue , Reações Cruzadas , Dermacentor/imunologia , Escherichia coli/genética , Proteínas de Insetos/genética , Ixodes/imunologia , Ixodes/metabolismo , Ratos , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/isolamento & purificação
13.
Ann Bot ; 118(2): 271-80, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27371693

RESUMO

BACKGROUND AND AIMS: Retranslocation of iron (Fe) from source tissues enhances plant tolerance to Fe deficiency. Previous work has shown that silicon (Si) can alleviate Fe deficiency by enhancing acquisition and root to shoot translocation of Fe. Here the role of Si in Fe mobilization in older leaves and the subsequent retranslocation of Fe to young leaves of cucumber (Cucumis sativus) plants growing under Fe-limiting conditions was investigated. METHODS: Iron ((57)Fe or naturally occurring isotopes) was measured in leaves at different positions on plants hydroponically growing with or without Si supply. In parallel, the concentration of the Fe chelator nicotianamine (NA) along with the expression of nicotianamine synthase (NAS) involved in its biosynthesis and the expression of yellow stripe-like (YSL) transcripts mediating Fe-NA transport were also determined. KEY RESULTS: In plants not receiving Si, approximately half of the total Fe content remained in the oldest leaf. In contrast, Si-treated plants showed an almost even Fe distribution among leaves with four different developmental stages, thus providing evidence of enhanced Fe remobilization from source leaves. This Si-stimulated Fe export was paralleled by an increased NA accumulation and expression of the YSL1 transporter for phloem loading/unloading of the Fe-NA complex. CONCLUSIONS: The results suggest that Si enhances remobilization of Fe from older to younger leaves by a more efficient NA-mediated Fe transport via the phloem. In addition, from this and previous work, a model is proposed of how Si acts to improve Fe homeostasis under Fe deficiency in cucumber.


Assuntos
Alquil e Aril Transferases/metabolismo , Cucumis sativus/efeitos dos fármacos , Deficiências de Ferro , Silício/farmacologia , Alquil e Aril Transferases/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Cucumis sativus/metabolismo , Homeostase , Hidroponia , Modelos Biológicos , Floema/efeitos dos fármacos , Floema/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Food Chem ; 175: 516-22, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25577114

RESUMO

Chokeberry juice was subjected to in vitro gastric digestion in the presence of food matrix in order to determine the changes in polyphenol content and antioxidant activity. Addition of food matrix immediately decreased the total phenolic content, anthocyanin content, DPPH scavenging activity as well as total reducing power by 36%, 90%, 45% and 44%, respectively. After in vitro digestion, total phenolic content, anthocyanin content and reducing power are slightly elevated, but they are still lower than in initial non-digested juice. The effect of digested juice on Caco-2 cells proliferation was also studied, and the reduction of proliferative rate by approximately 25% was determined. Our results suggested that although a large proportion of chokeberry phenolics undergo transformation during digestion they are still potent as antioxidant and antiproliferative agents.


Assuntos
Antioxidantes/farmacologia , Frutas/química , Fenóis/análise , Photinia/química , Antioxidantes/análise , Antioxidantes/metabolismo , Bebidas , Trato Gastrointestinal/metabolismo , Humanos , Técnicas In Vitro , Modelos Biológicos , Fenóis/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/química , Polifenóis/metabolismo
15.
New Phytol ; 198(4): 1096-1107, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23496257

RESUMO

· Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. · A combined approach was performed including analyses of apoplastic Fe, reduction-based Fe acquisition and Fe-mobilizing compounds in roots along with the expression of related genes. · Si-treated plants accumulated higher concentrations of root apoplastic Fe, which rapidly decreased when Fe was withheld from the nutrient solution. Under Fe-deficient conditions, Si also increased the accumulation of Fe-mobilizing compounds in roots. Si supply stimulated root activity of Fe acquisition at the early stage of Fe deficiency stress through regulation of gene expression levels of proteins involved in Fe acquisition. However, when the period of Fe deprivation was extended, these reactions further decreased as a consequence of Si-induced enhancement of the Fe status of the plants. · This work provides new evidence for the beneficial role of Si in plant nutrition and clearly indicates that Si-mediated alleviation of Fe deficiency includes an increase of the apoplastic Fe pool in roots and an enhancement of Fe acquisition.


Assuntos
Cucumis sativus/metabolismo , Espaço Extracelular/metabolismo , Deficiências de Ferro , Ferro/metabolismo , Raízes de Plantas/metabolismo , Silício/farmacologia , Citratos/metabolismo , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Espaço Extracelular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Malatos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Xilema/efeitos dos fármacos , Xilema/metabolismo
16.
J Plant Physiol ; 167(16): 1407-11, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20637525

RESUMO

Metallothionein type 3 (MT3) expression has previously been detected in leaves, fruits, and developing somatic embryos in different plant species. However, specific tissular and cellular localization of MT3 transcripts have remained unidentified. In this study, in situ RNA-RNA analysis revealed buckwheat metallothionein type 3 (FeMT3) transcript localization in vascular elements, mesophyll and guard cells of leaves, vascular tissue of roots and throughout the whole embryo. Changes in FeMT3 mRNA levels in response to drought and oxidative stress, as well as ROS scavenging abilities of the FeMT3 protein in yeast were also detected, indicating possible involvement of FeMT3 in stress defense and ROS related cellular processes.


Assuntos
Fagopyrum/metabolismo , Metalotioneína/metabolismo , Proteínas de Plantas/metabolismo , Secas , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
J Agric Food Chem ; 58(6): 3488-94, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20187605

RESUMO

The protective role in vivo of buckwheat metallothionein type 3 (FeMT3) during metal stress and the responsiveness of its promoter to metal ions were examined. Increased tolerance to heavy metals of FeMT3 producing Escherichia coli and cup1(Delta) yeast cells was detected. The defensive ability of buckwheat MT3 during Cd and Cu stresses was also demonstrated in Nicotiana debneyii leaves transiently expressing FeMT3. In contrast to phytochelatins, the cytoplasmatic localization of FeMT3 was not altered under heavy metal stress. Functional analysis of the corresponding promoter region revealed extremely high inducibility upon Cu(2+) and Cd(2+) treatments. The confirmed defense ability of FeMT3 protein in vivo and the great responsiveness of its promoter during heavy metal exposure make this gene a suitable candidate for biotechnological applications.


Assuntos
Fagopyrum/genética , Regulação da Expressão Gênica de Plantas , Metais Pesados/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Sequência de Aminoácidos , Cádmio/metabolismo , Cobre/metabolismo , Fagopyrum/química , Metalotioneína 3 , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Nicotiana/genética , Nicotiana/metabolismo
18.
J Plant Physiol ; 166(9): 996-1000, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19185389

RESUMO

To shed light on expression regulation of the metallothionein gene from buckwheat (FeMT3), functional promoter analysis was performed with a complete 5' regulatory region and two deletion variants, employing stably transformed tobacco plants. Histochemical GUS assay of transgenic tobacco lines showed the strongest signals in vascular elements of leaves and in pollen grains, while somewhat weaker staining was observed in the roots of mature plants. This tissue specificity pattern implies a possible function of buckwheat MT3 in those tissues. Quantitative GUS assay showed strong up-regulation of all three promoter constructs (proportional to the length of the regulatory region) in leaves submerged in liquid MS medium containing sucrose, after a prolonged time period. This represented a complex stress situation composed of several synergistically related stress stimuli. These findings suggest complex transcriptional regulation of FeMT3, requiring interactions among a number of different factors.


Assuntos
Fagopyrum/genética , Metalotioneína/genética , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Sacarose/farmacologia , Nicotiana/genética
19.
Plant Physiol Biochem ; 42(2): 157-63, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15283132

RESUMO

We have isolated and characterized a full-length cDNA for legumin-like storage polypeptide from buckwheat seed (Fagopyrum esculentum Moench) and compared its deduced amino acid sequence with those from different representatives of dicots, monocots and gymnosperms. The cDNA sequence was reconstructed from two overlapping clones isolated from a cDNA library made on mRNA of buckwheat seed at the mid-maturation stage of development. Analysis of the deduced amino acid sequence revealed that this specific buckwheat storage polypeptide should be classified in the methionine-rich legumin subfamily present in the lower angiosperm clades, a representative of which was first characterized in Magnolia salicifolia (clone B 14). The fact that a methionine-rich legumin coexists together with methionine-poor legumins in buckwheat should be an important element regarding the evolutionary position of buckwheat. This may also be supporting evidence that the B14 ortholog was not lost in evolution but was protected under pressure of an increased need for sulfur. Using primers designed from characterized cDNA, we also isolated its corresponding gene from buckwheat genomic DNA and analyzed the characteristic exon/intron structure. The firstly identified two-intron structure of buckwheat legumin gene is an important contribution to study of methionine-rich legumins in lower angiosperms.


Assuntos
Evolução Biológica , Fagopyrum/classificação , Fagopyrum/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Metionina/análise , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Leguminas
20.
J Plant Physiol ; 161(6): 741-6, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15266722

RESUMO

The buckwheat metallothionein-like (MT3) gene expression was studied throughout seed and leaf development, as well as under the influence of different external stimuli. MT3 mRNAs were detected from the early stage of seed development to the end of maturation, reaching the highest level during the mid-maturation stage. High MT3 mRNA level was noticed for both green and senescent leaves. The influence of raising Cu ion concentrations on MT3 gene expression was studied only in leaves, while the effect of Zn ions was analyzed through seed development as well. It was found that Cu and Zn ions had stimulatory effects on expression in leaves. MT3 expression was significantly enhanced in the early stage of seed development in response to Zn ions, while after this stage, influence of Zn ions was not detected. After H2O2/NaCl treatment, MT3 mRNA level was decreased in green leaves, contrary to senescent leaves where expression levels remained unchanged. H2O2 treatment caused the increase of MT3 mRNA levels in the mid-maturation stage of seed development. NaCl had no effect on expression levels in seeds. According to obtained results, proposed functions in different plant organs regarding oxidative stress and metal homeostasis are discussed.


Assuntos
Fagopyrum/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Metalotioneína/genética , Fagopyrum/efeitos dos fármacos , Fagopyrum/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Sementes/efeitos dos fármacos , Sementes/fisiologia , Transcrição Gênica , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA