Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 949: 174964, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059656

RESUMO

The currently used pesticides are mostly semi-volatile organic compounds. As a result, a fraction of them can be adsorbed on atmospheric aerosol surface. Their atmospheric photolysis is poorly documented, and gaps persist in understanding their reactivity in the particle phase. Laboratory experiments were conducted to determine the photolysis rates of eight commonly used pesticides (i.e., cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, and tetraconazole) using a flow reactor. These pesticides were individually adsorbed on hydrophobic silica particles and exposed to a filtered xenon lamp to mimic atmospheric aerosols and sunlight irradiation, respectively. The estimated photolysis rate constants ranged from less than (3.4 ± 0.3) × 10-7 s-1 (permethrin; >47.2 days) to (3.8 ± 0.2) × 10-5 s-1 (Fipronil; 0.4 days), depending on the considered compound. Moreover, this study assessed the influence of pesticide mixtures on their photolysis rates, revealing that certain pesticides can act as photosensitizers, thereby enhancing the reactivity of permethrin and tetraconazole. This study underscores the importance of considering photolysis degradation when evaluating pesticide fate and reactivity, as it can be a predominant degradation pathway for some pesticides. This contributes to an enhanced understanding of their behavior in the atmosphere and their impact on air quality.

2.
Environ Pollut ; 344: 123351, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272169

RESUMO

Pesticides in the atmosphere can exist in both gaseous and particulate phases due to their semi-volatile properties. They can undergo degradation when exposed to atmospheric oxidants like ozone and hydroxyl radicals. The majority of studies on the atmospheric reactivity of pesticides study them in combination, without considering potential mixture effects that could induce uncertainties in the results. Therefore, this study aims to address this gap, through laboratory studies using a flow reactor, and by evaluating the degradation kinetics of pendimethalin mixed with folpet, tebuconazole, and S-metolachlor, which were simultaneously adsorbed on hydrophobic silica particles that mimic atmospheric aerosols. The comparison with other mixtures, including pendimethalin, from the literature has shown similar reactivity with ozone and hydroxyl radicals, indicating that the degradation kinetics of pesticides is independent of the mixture. Moreover, the degradation rates of the four pesticides under study indicate that they are not or slightly degraded by ozone, with half-lives ranging from 29 days to over 800 days. In contrast, when exposed to hydroxyl radicals, tebuconazole exhibited the fastest reactivity, with a half-life of 4 days, while pendimethalin had a half-life of 17 days.


Assuntos
Ozônio , Praguicidas , Praguicidas/química , Ozônio/química , Compostos de Anilina , Oxidantes/química , Radical Hidroxila/química , Atmosfera/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA