Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-18, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874075

RESUMO

Available COVID-19 vaccines are primarily based on SARS-CoV-2 spike protein (S). Due to the emergence of new SARS-CoV-2 variants, other virus proteins with more conservancy, such as Membrane (M) protein, are desired for vaccine development. The reverse vaccinology approach was employed to design a multi-epitope SARS-CoV-2 vaccine candidate based on S and M proteins. Cytotoxic T-lymphocyte (CTL), helper T-lymphocyte (HTL), linear B-lymphocyte (LBL) and conformational B-lymphocyte (CBL) of S and M proteins were predicted and screened to choose the best epitopes. A multi-epitope vaccine candidate was constructed using selected CTL, HTL and LBL epitopes. The efficiency of the construct in binding to some immune receptors and an RBD-potent neutralizing monoclonal antibody (bebtelovimab) was predicted, and its immunogenicity was simulated. Finally, in silico cloning of the constructed gene was performed. The potency of our construct as a SARS-CoV-2 vaccine was validated using several bioinformatics tools. The simulation results showed that the construct can induce both cellular and humoral immune responses by producing appropriate cytokines, and it can even create an excellent immune memory response. Furthermore, the designed construct interacts with innate immune receptors such as TLR2 and TLR4 and the terminal variable domain of bebtelovimab with high affinity. We developed a multi-epitope construct based on the S and M proteins of the SARS-CoV-2 virus with high immunogenicity potential using the most up-to-date immunoinformatics and computational biology approaches. The actual efficiency of this multi-epitope vaccine should be further evaluated via in vitro and in vivo studies.Communicated by Ramaswamy H. Sarma.

2.
Cell J ; 17(1): 121-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870841

RESUMO

OBJECTIVE: Animal model studies have shown that MSY2 and JHDM2A genes have an important role in spermatogenesis process and fertility of male mice. But the potential role of these genes in human spermatogenesis and fertility is not known yet. Therefore, we evaluated expression ratios of these genes in testis tissues of men with normal and impaired spermatogenesis. MATERIALS AND METHODS: In this experimental study, after RNA extraction and cDNA syn- thesis from 50 non-obstructive azoospermic and 12 normal testis tissues, the expression ratios of genes were evaluated by real time polymerase chain reaction (PCR) technique. Hematoxcylin and eosin (H&E) staining was used for histological classification of testis tissues. For statistical analysis, one way analysis of variance (ANOVA) test was carried out. RESULTS: Our results showed a significant reduction in mRNA level of YBX2 in samples with impaired spermatogenesis (p<0.001) compared to samples with qualitatively normal spermatogenesis and normal spermatogenesis; however, in JHDM2A gene, despite sensible reduction in gene expression level in men with impaired spermatogenesis, no significant differences were shown (p>0.05). Furthermore in YBX2, a significant negative correlation was demonstrated between the efficiency score of spermatogenesis and the threshold cycle (CT) (r=-0.7, p<0.0001), whereas in JHDM2A, this negative correlation was not significant (r=-0.4, p=0.06). CONCLUSION: Generally, these data indicated that YBX2 and JHDM2A genes may play an important role in male infertility, and suggested that these molecules can act as useful biomarkers for predicting male infertility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA