Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(40): 5270-5273, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38600894

RESUMO

Passerini polymerization using naturally occurring α-lipoic acid as a raw material yields polyamides with 1,2-dithiolane functional groups in a one-step reaction. The polyamide exhibits characteristics of an adaptable dynamically crosslinked network through reversible ring-opening reaction of 1,2-dithiolane, enabling self-healing, reusable strong adhesion, and regeneration through decrosslinking and re-crosslinking.

2.
RSC Adv ; 14(11): 7850-7857, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38449826

RESUMO

Four amino acid-bearing acrylamides, N-acryloyl-l-threonine (AThrOH), N-acryloyl-l-glutamic acid (AGluOH), N-acryloyl-l-phenylalanine (APheOH), and N-acryloyl-l, l-diphenylalanine (APhePheOH), were selected for copolymerization with n-butyl acrylate (nBA) to develop amino acid-based self-healable copolymers. A series of copolymers comprising amino acid-bearing acrylamides and nBA with tunable comonomer compositions and molecular weights were synthesized by free radical and reversible addition-fragmentation chain-transfer copolymerization. Self-healing and mechanical properties originated from the noncovalent bonds between the carboxyl, hydroxyl, and amide groups, and π-π stacking interactions among the amino acid residues in the side chains were evaluated. Among these copolymers, P(nBA-co-AGluOH) with suitable comonomer compositions and molecular weights (nBA : AGluOH = 82 : 18, Mn = 18 300, Mw/Mn = 2.58) exhibited good mechanical properties (modulus of toughness = 17.3 MJ m-3) and self-healing under ambient conditions. The multiple noncovalent bonds of P(nBA-co-AGluOH)s were also efficient in improving the optical properties with an enhanced refractive index and good transparency.

3.
Int J Biol Macromol ; 253(Pt 3): 126880, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709226

RESUMO

Highly efficient adsorbents are needed to remove uremic toxins and reduce the economic and societal burden of the current dialysis treatments in resource-limited environments. In this study, nanostructured porous carbon nanofibers with nitrogen-doped zeolites (NZ-PCNF) were prepared, by electrospinning zeolites with chitosan-poly(ethylene oxide) blends, followed by a one-step carbonization process, without further activation steps or aggressive chemical additives for N-doping. The results showed that N-zeolites were successfully integrated into an ultrafine carbon nanofiber network, with a uniform nanofiber diameter of approximately 25 nm, hierarchical porous structure (micro- and mesopores), and high specific surface area (639.29 m2/g), facilitating uremic toxin diffusion and adsorption. The self-N-doped structure in the NZ-PCNF removed more creatinine (∼1.8 times) than the porous carbon nanofibers when using the same weight of precursor materials. Cytotoxicity and hemolysis tests were performed to verify the safety of NZ-PCNF. This study provides a novel strategy for transforming chitosan-based materials into state-of-the-art porous carbon nanofiber/zeolite self-N-doped composites, affording an efficient bioderived adsorbent for the removal of uremic toxins in patients with chronic kidney disease.


Assuntos
Quitosana , Nanofibras , Zeolitas , Humanos , Carbono/química , Toxinas Urêmicas , Nanofibras/química , Porosidade , Nitrogênio/química , Diálise Renal
4.
Adv Sci (Weinh) ; : e2204310, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394203

RESUMO

Measuring flow of gases is of fundamental importance yet is typically done with complex equipment. There is, therefore, a longstanding need for a simple and inexpensive means of flow measurement. Here, gas flow is measured using an extremely simple device that consists of an Ar plasma-treated polydimethylsiloxane (PDMS) slab adhered on a glass substrate with a tight seal. This device does not even have a channel, instead, gas can flow between the PDMS and the glass by deforming the PDMS wall, in other words, by making an interstice as a temporary path for the flow. The formation of the temporary path results in a compressive bending stress at the inner wall of the path, which leads to the formation of well-ordered wrinkles, and hence, the emergence of structural color that changes the optical transmittance of the device. Although it is very simple, this setup works sufficiently well to measure arbitrary gases and analyzes their flow rates, densities, and viscosities based on the change in color. It is also demonstrated that this technique is applicable to the flow-induced display of a pattern such as a logo for advanced applications.

5.
Sci Adv ; 8(42): eadd0226, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260682

RESUMO

Highly stretchable and self-healing polymer gels formed solely by physical entanglements of ultrahigh-molecular weight (UHMW) polymers were fabricated through a facile one-step process. Radical polymerization of vinyl monomers in ionic liquids under very low initiator concentration conditions produced UHMW polymers of more than 106 g/mol with nearly 100% yield, resulting in the formation of physically entangled transparent polymer gels. The UHMW gels showed excellent properties, such as high stretchability, high ionic conductivity, and recyclability. Furthermore, the UHMW gel exhibited room temperature self-healing ability without any external stimuli. The tensile experiments and molecular dynamics simulations indicate that the nonequilibrium state of the fractured surfaces and microscopic interactions between the polymer chains and solvents play a vital role in the self-healing ability. This study provides a physical approach for fabricating stretchable and self-healing polymer gels based on UHMW polymers.

6.
Inorg Chem ; 61(12): 4865-4878, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35297609

RESUMO

We successfully synthesized methylene blue (MB+)-immobilized hydroxyapatite (HM) nanoparticles by changing the initial P/Ca molar ratio. The immobilized amount of MB+ increased with increasing the initial P/Ca molar ratio from 0.6 to 4.0, and the HM had an elliptical shape (long length, 21-24 nm; short length, 11-13 nm) irrespective of the initial P/Ca molar ratio. Upon increasing the initial P/Ca molar ratio, the number of carbonate ions on the HM surface decreased, which would be owing to the electrostatic repulsion by the surface phosphate ions (i.e., P-O-), the surface P-OH mainly dissociated to form P-O-, and the electrostatic interaction of P-O- with MB+ enhanced. The bonding of MB+ with surface P-OH and Ca2+ sites of hydroxyapatite would be hydrogen-bonding and Lewis acid-base interactions, respectively. The optimum synthesis condition for MB+ immobilization at the monomer state was found to be the initial P/Ca molar ratio of 2.0. Here, the existence percentage of the MB+ monomer and the molecular occupancy of the surface carbonate ion at the initial P/Ca molar ratio of 2.0 were higher than those at 4.0 with no significant difference in the immobilized amount of MB+, indicating that MB+ at the initial P/Ca molar ratio of 4.0 is more aggregated than that at 2.0. These results suggested that a part of carbonate ions has a role as a spacer to suppress MB+ aggregation. Accordingly, the interfacial interactions between the MB+ monomer and the hydroxyapatite surface were clarified, which can effectively be controlled by the initial P/Ca molar ratio. These findings will provide fundamental and useful knowledge for the design of calcium phosphate-organic nanohybrids. We believe that these particles will be the base materials to realize diagnostic and/or therapeutic functions through the molecular state control by optimizing the synthesis conditions.


Assuntos
Durapatita , Nanopartículas , Azul de Metileno
7.
Anal Sci ; 38(3): 607-611, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35286629

RESUMO

A pulsed dynamic light scattering (DLS) system, which would be potentially applied to nonlinear DLS with molecular selectivity, was developed by combining a sub-nanosecond pulsed laser with a software-based detection system. The distortion of the time correlation function due to the clipping effect in the photon counting module, and the resulting underestimation of the particle size, were successfully calibrated based on a theoretical simulation. The effective removal of random noises was also demonstrated via time gating synchronized to the laser pulses.


Assuntos
Luz , Fótons , Calibragem , Difusão Dinâmica da Luz , Lasers
8.
J Mater Chem B ; 10(3): 396-405, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34935845

RESUMO

Hydroxyapatite (HA), as the main mineral component in hard tissues, has good biocompatibility. In particular, HA films are widely used as bioactive coatings for artificial bones and dental implants in biomedical fields. However, it is currently difficult to prepare a nanostructure-controlled HA film by a wet process for further applications. Herein, we report the synthesis of HA nanoparticles coordinated by citric acid (Cit/HA) based on the interactions between carboxylate and calcium ions to control the sizes and shapes of the hybrid nanoparticles, to improve their dispersibility in water and to eventually form uniform transparent films with nanospaces, and investigated the film formation mechanism. As compared with the well-known rod-like HA nanoparticles (size: 48 × 15 nm2), we successfully synthesized spherical and negatively charged Cit/HA nanoparticles (size: 25 × 23 nm2) to achieve highly transparent Cit/HA films using the spin-coating technique. The Cit/HA films had uniform and crack-free appearance. About the nanostructures, we found that the Cit/HA film surfaces had meso-scaled nanospaces with a diameter of 4.2 nm based on the regular arrangement of spherical nanoparticles, instead of the HA film with a nanospace diameter of 24.5 nm formed by non-uniform accumulation. Therefore, we successfully achieved the control of the nanospace sizes of the films with the nanoparticle arrangement and realized transparent nanoparticle film formation in a very simple way, which will provide more convenient bioceramic films for biomedical applications.


Assuntos
Ácido Cítrico/química , Complexos de Coordenação/química , Hidroxiapatitas/química , Nanopartículas/química , Animais , Cálcio/química , Linhagem Celular , Camundongos , Porosidade
9.
Membranes (Basel) ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34436344

RESUMO

Environmental crisis and water contamination have led to worldwide exploration for advanced technologies for wastewater treatment, and one of them is photocatalytic degradation. A one-dimensional hollow nanofiber with enhanced photocatalytic properties is considered a promising material to be applied in the field. Therefore, we synthesized titanium dioxide hollow nanofibers (THNF) with extended surface area, light-harvesting properties and an anatase-rutile heterojunction via a template synthesis method and followed by a calcination process. The effect of calcination temperature on the formation and properties of THNF were determined and the possible mechanism of THNF formation was proposed. THNF nanofibers produced at 600 °C consisted of a mixture of 24.2% anatase and 75.8% rutile, with a specific surface area of 81.2776 m2/g. The hollow nanofibers also outperformed the other catalysts in terms of photocatalytic degradation of MB dye, at 85.5%. The optimum catalyst loading, dye concentration, pH, and H2O2 concentration were determined at 0.75 g/L, 10 ppm, pH 11, and 10 mM, respectively. The highest degradation of methylene blue dye achieved was 95.2% after 4 h of UV irradiation.

10.
Chem Commun (Camb) ; 56(93): 14641-14644, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33155603

RESUMO

Bottlebrush polymers (BPs) are highly tunable with regard to their glass transition temperature, refractive index, and shape. Herein, well-defined BPs were implemented as soft fillers to toughen multiphase plastics without loss of transparency and thermal stability, providing superior fracture toughness than a conventional linear polymer (LP). This study discloses a novel application of BPs and paves the way toward their further development.

11.
Sci Technol Adv Mater ; 20(1): 1010-1021, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31692965

RESUMO

Machine learning is emerging as a powerful tool for the discovery of novel high-performance functional materials. However, experimental datasets in the polymer-science field are typically limited and they are expensive to build. Their size (< 100 samples) limits the development of chemical intuition from experimentalists, as it constrains the use of machine-learning algorithms for extracting relevant information. We tackle this issue to predict and optimize adhesive materials by combining laboratory experimental design, an active learning pipeline and Bayesian optimization. We start from an initial dataset of 32 adhesive samples that were prepared from various molecular-weight bisphenol A-based epoxy resins and polyetheramine curing agents, mixing ratios and curing temperatures, and our data-driven method allows us to propose an optimal preparation of an adhesive material with a very high adhesive joint strength measured at 35.8 ± 1.1 MPa after three active learning cycles (five proposed preparations per cycle). A Gradient boosting machine learning model was used for the successive prediction of the adhesive joint strength in the active learning pipeline, and the model achieved a respectable accuracy with a coefficient of determination, root mean square error and mean absolute error of 0.85, 4.0 MPa and 3.0 MPa, respectively. This study demonstrates the important impact of active learning to accelerate the design and development of tailored highly functional materials from very small datasets.

12.
ACS Appl Mater Interfaces ; 11(35): 32381-32389, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31429550

RESUMO

Superhydrophobic materials with micro/nanotextured surface have attracted tremendous attention owing to their potential applications such as self-cleaning, antifouling, anti-icing, and corrosion prevention. Such a micro/nanotextured surface is a key for high water repellency. However, such a texture is fragile and readily damaged when the material is deformed, scratched, or sliced off. Thus, it is challenging to develop superhydrophobic materials that can sustain high water repellency after experiencing such a mechanical deformation and damage. Here we report abrasion/scratching/slicing/droplet impacting/bending/twisting-tolerant superhydrophobic flexible materials with porcupinefish-like structure by using a composite of micrometer-scale tetrapod-shaped ZnO and poly(dimethylsiloxane). Owing to the geometry of the tetrapod and elasticity of poly(dimethylsiloxane), the composite material exhibits stable water repellency after 1000 abrasion and 1000 bending cycles, or even after their surfaces were sliced off many times. The material maintains superhydrophobicity even under a mechanically deformed state such as bending and twisting. The materials can be painted on a variety of substrates and molded into desired shapes and used in a myriad of applications that require superhydrophobicity.


Assuntos
Dimetilpolisiloxanos/química , Interações Hidrofóbicas e Hidrofílicas , Água/química , Óxido de Zinco/química , Animais , Propriedades de Superfície , Tetraodontiformes
13.
Data Brief ; 20: 1099-1104, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30229126

RESUMO

This paper reports transmission and scattering spectra of poly(vinyl chloride) (PVC) in styrene liquid, which is derived from Christiansen effect. The spectra were measured by varying scattering angles. Further discussion on Christiansen color was provided in the paper entitled "Transmitting and scattering colors of porous particles of poly(vinyl chloride) based on Christiansen effect" (Samitsu et al., 2018) [1]. The paper additionally provides refractive indices of PVC reported in literatures because Christiansen effect has close relationship with wavelength-dependent refractive index, i.e. optical dispersion. The values have considerable range probably depending on samples and determination methods for refractive index. The comprehensive data list is therefore potentially useful for studying refractive index of polymers.

14.
Chemosphere ; 204: 79-86, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29653325

RESUMO

Separation and purification of oilfield produced water (OPW) is a major environmental challenge due to the co-production of the OPW during petroleum exploration and production operations. Effective capture of oil contaminant and its in-situ photodegradation is one of the promising methods to purify the OPW. Based on the photocatalytic capability of graphitic carbon nitride (GCN) which was recently rediscovered, photodegradation capability of GCN for OPW was investigated in this study. GCN was synthesized by calcination of urea and further exfoliated into nanosheets. The GCNs were incorporated into polyacrylonitrile nanofibers using electrospinning, which gave a liquid-permeable self-supporting photocatalytic nanofiber mat that can be handled by hand. The photocatalytic nanofiber demonstrated 85.4% degradation of OPW under visible light irradiation, and improved the degradation to 96.6% under UV light. Effective photodegradation of the photocatalytic nanofiber for OPW originates from synergetic effects of oil adsorption by PAN nanofibers and oil photodegradation by GCNs. This study provides an insight for industrial application on purification of OPW through photocatalytic degradation under solar irradiation.


Assuntos
Nanofibras/química , Nitrilas/química , Campos de Petróleo e Gás/química , Fotólise , Água/química , Resinas Acrílicas , Catálise , Raios Ultravioleta , Poluentes Químicos da Água/química , Purificação da Água/métodos
15.
Chem Commun (Camb) ; 50(66): 9393-6, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25005463

RESUMO

Hydrophobic mesoporous polymer nanofibre networks were converted to hydrophilic ones by a mild sulfonation reaction. The resultant mesoporous polystyrene with a large free surface area effectively captured water-soluble dye molecules and allowed aromatic compounds to rapidly permeate into the internal binding sites.

16.
Nat Chem ; 6(3): 188-95, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24557132

RESUMO

Various conventional reactions in polymer chemistry have been translated to the supramolecular domain, yet it has remained challenging to devise living supramolecular polymerization. To achieve this, self-organization occurring far from thermodynamic equilibrium--ubiquitously observed in nature--must take place. Prion infection is one example that can be observed in biological systems. Here, we present an 'artificial infection' process in which porphyrin-based monomers assemble into nanoparticles, and are then converted into nanofibres in the presence of an aliquot of the nanofibre, which acts as a 'pathogen'. We have investigated the assembly phenomenon using isodesmic and cooperative models and found that it occurs through a delicate interplay of these two aggregation pathways. Using this understanding of the mechanism taking place, we have designed a living supramolecular polymerization of the porphyrin-based monomers. Despite the fact that the polymerization is non-covalent, the reaction kinetics are analogous to that of conventional chain growth polymerization, and the supramolecular polymers were synthesized with controlled length and narrow polydispersity.


Assuntos
Materiais Biomiméticos/química , Biomimética/métodos , Substâncias Macromoleculares/química , Modelos Moleculares , Estrutura Molecular , Polimerização
17.
Chempluschem ; 79(2): 197-210, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31986581

RESUMO

Composites between carbon fibers (CFs) and heterogeneous materials have been widely studied and their fabrication techniques have been developed. However, their hydrophobic surfaces make it difficult to disperse CFs into hydrophilic resins, which results in weak junctions with ceramics. To develop high-strength composite fibers, it is important to design interfacial chemical bonds. Thus, surface-modification techniques of CFs have recently become the main focus and their interfaces have been characterized by various analytical methods. In this Minireview, various techniques that modify the CF surface by coating with inorganic polymers (metal oxide compounds) are highlighted, and the applications of novel nanocomposite fibers are also described. Furthermore, interfacial bonds between CFs and polymer resins are reviewed and discussed in terms of CF-reinforced plastics and their future prospects.

18.
Chempluschem ; 79(2)2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31986593

RESUMO

Composites between carbon fibers (CFs) and heterogeneous materials have been widely studied and their fabrication techniques have been developed. However, their hydrophobic surfaces make it difficult to disperse CFs into hydrophilic resins, which results in weak junctions with ceramics. To develop high-strength composite fibers, it is important to design interfacial chemical bonds. Thus, surface-modification techniques of CFs have recently become the main focus and their interfaces have been characterized by various analytical methods. In this Minireview, various techniques that modify the CF surface by coating with inorganic polymers (metal oxide compounds) are highlighted, and the applications of novel nanocomposite fibers are also described. Furthermore, interfacial bonds between CFs and polymer resins are reviewed and discussed in terms of CF-reinforced plastics and their future prospects.

19.
Nat Commun ; 4: 2653, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24145702

RESUMO

There are increasing requirements worldwide for advanced separation materials with applications in environmental protection processes. Various mesoporous polymeric materials have been developed and they are considered as potential candidates. It is still challenging, however, to develop economically viable and durable separation materials from low-cost, mass-produced materials. Here we report the fabrication of a nanofibrous network structure from common polymers, based on a microphase separation technique from frozen polymer solutions. The resulting polymer nanofibre networks exhibit large free surface areas, exceeding 300 m(2) g(-1), as well as small pore radii as low as 1.9 nm. These mesoporous polymer materials are able to rapidly adsorb and desorb a large amount of carbon dioxide and are also capable of condensing organic vapours. Furthermore, the nanofibres made of engineering plastics with high glass transition temperatures over 200 °C exhibit surprisingly high, temperature-dependent adsorption of organic solvents from aqueous solution.

20.
Science ; 335(6067): 444-7, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22282807

RESUMO

Chemical, petrochemical, energy, and environment-related industries strongly require high-performance nanofiltration membranes applicable to organic solvents. To achieve high solvent permeability, filtration membranes must be as thin as possible, while retaining mechanical strength and solvent resistance. Here, we report on the preparation of ultrathin free-standing amorphous carbon membranes with Young's moduli of 90 to 170 gigapascals. The membranes can separate organic dyes at a rate three orders of magnitude greater than that of commercially available membranes. Permeation experiments revealed that the hard carbon layer has hydrophobic pores of ~1 nanometer, which allow the ultrafast viscous permeation of organic solvents through the membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA