Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
JAMA Netw Open ; 7(2): e240146, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386321

RESUMO

Importance: National implementation of rapid trio genome sequencing (rtGS) in a clinical acute setting is essential to ensure advanced and equitable care for ill neonates. Objective: To evaluate the feasibility, diagnostic efficacy, and clinical utility of rtGS in neonatal intensive care units (NICUs) throughout Israel. Design, Setting, and Participants: This prospective, public health care-based, multicenter cohort study was conducted from October 2021 to December 2022 with the Community Genetics Department of the Israeli Ministry of Health and all Israeli medical genetics institutes (n = 18) and NICUs (n = 25). Critically ill neonates suspected of having a genetic etiology were offered rtGS. All sequencing, analysis, and interpretation of data were performed in a central genomics center at Tel-Aviv Sourasky Medical Center. Rapid results were expected within 10 days. A secondary analysis report, issued within 60 days, focused mainly on cases with negative rapid results and actionable secondary findings. Pathogenic, likely pathogenic, and highly suspected variants of unknown significance (VUS) were reported. Main Outcomes and Measures: Diagnostic rate, including highly suspected disease-causing VUS, and turnaround time for rapid results. Clinical utility was assessed via questionnaires circulated to treating neonatologists. Results: A total of 130 neonates across Israel (70 [54%] male; 60 [46%] female) met inclusion criteria and were recruited. Mean (SD) age at enrollment was 12 (13) days. Mean (SD) turnaround time for rapid report was 7 (3) days. Diagnostic efficacy was 50% (65 of 130) for disease-causing variants, 11% (14 of 130) for VUS suspected to be causative, and 1 novel gene candidate (1%). Disease-causing variants included 12 chromosomal and 52 monogenic disorders as well as 1 neonate with uniparental disomy. Overall, the response rate for clinical utility questionnaires was 82% (107 of 130). Among respondents, genomic testing led to a change in medical management for 24 neonates (22%). Results led to immediate precision medicine for 6 of 65 diagnosed infants (9%), an additional 2 (3%) received palliative care, and 2 (3%) were transferred to nursing homes. Conclusions and Relevance: In this national cohort study, rtGS in critically ill neonates was feasible and diagnostically beneficial in a public health care setting. This study is a prerequisite for implementation of rtGS for ill neonates into routine care and may aid in design of similar studies in other public health care systems.


Assuntos
Estado Terminal , Terapia Intensiva Neonatal , Lactente , Recém-Nascido , Feminino , Masculino , Humanos , Estudos de Coortes , Estudos Prospectivos , Unidades de Terapia Intensiva Neonatal
2.
Am J Ophthalmol ; 258: 183-195, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972748

RESUMO

PURPOSE: To report the genetic etiology of Lisch epithelial corneal dystrophy (LECD). DESIGN: Multicenter cohort study. METHODS: A discovery cohort of 27 individuals with LECD from 17 families, including 7 affected members from the original LECD family, 6 patients from 2 new families and 14 simplex cases, was recruited. A cohort of 6 individuals carrying a pathogenic MCOLN1 (mucolipin 1) variant was reviewed for signs of LECD. Next-generation sequencing or targeted Sanger sequencing were used in all patients to identify pathogenic or likely pathogenic variants and penetrance of variants. RESULTS: Nine rare heterozygous MCOLN1 variants were identified in 23 of 27 affected individuals from 13 families. The truncating nature of 7 variants and functional testing of 1 missense variant indicated that they result in MCOLN1 haploinsufficiency. Importantly, in the homozygous and compound-heterozygous state, 4 of 9 LECD-associated variants cause the rare lysosomal storage disorder mucolipidosis IV (MLIV). Autosomal recessive MLIV is a systemic disease and comprises neurodegeneration as well as corneal opacity of infantile-onset with epithelial autofluorescent lysosomal inclusions. However, the 6 parents of 3 patients with MLIV confirmed to carry pathogenic MCOLN1 variants did not have the LECD phenotype, suggesting MCOLN1 haploinsufficiency may be associated with reduced penetrance and variable expressivity. CONCLUSIONS: MCOLN1 haploinsufficiency is the major cause of LECD. Based on the overlapping clinical features of corneal epithelial cells with autofluorescent inclusions reported in both LECD and MLIV, it is concluded that some carriers of MCOLN1 haploinsufficiency-causing variants present with LECD.


Assuntos
Distrofias Hereditárias da Córnea , Mucolipidoses , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/genética , Estudos de Coortes , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mucolipidoses/patologia , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/genética
3.
Harefuah ; 162(6): 344-351, 2023 Jun.
Artigo em Hebraico | MEDLINE | ID: mdl-37394435

RESUMO

INTRODUCTION: Inborn-Errors of Metabolism (IEM) are genetic disorders resulting from mutations in genes encoding proteins involved in biochemical-metabolic pathways. However, some IEMs lack specific biochemical markers. Early incorporation of next-generation-sequencing (NGS) including whole exome sequencing (WES) into the diagnostic algorithm of IEMs herein provided, increases diagnostic accuracy, permits genetic counseling and improves therapeutic options. This is exemplified by diseases affecting aminoacyl-tRNA synthetases (ARSs), enzymes involved in protein translation. Recent studies showed that supplementing amino-acids to cell-culture and patients with ARSs deficiencies resulted in improvement of biochemical and clinical parameters, respectively.


Assuntos
Erros Inatos do Metabolismo , Humanos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/terapia , Mutação , Biomarcadores , Aconselhamento Genético , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
J Med Genet ; 60(11): 1133-1141, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37460201

RESUMO

BACKGROUND: SUMOylation involves the attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on thousands of substrates with target-specific effects on protein function. Sentrin-specific proteases (SENPs) are proteins involved in the maturation and deconjugation of SUMO. Specifically, SENP7 is responsible for processing polySUMO chains on targeted substrates including the heterochromatin protein 1α (HP1α). METHODS: We performed exome sequencing and segregation studies in a family with several infants presenting with an unidentified syndrome. RNA and protein expression studies were performed in fibroblasts available from one subject. RESULTS: We identified a kindred with four affected subjects presenting with a spectrum of findings including congenital arthrogryposis, no achievement of developmental milestones, early respiratory failure, neutropenia and recurrent infections. All died within four months after birth. Exome sequencing identified a homozygous stop gain variant in SENP7 c.1474C>T; p.(Gln492*) as the probable aetiology. The proband's fibroblasts demonstrated decreased mRNA expression. Protein expression studies showed significant protein dysregulation in total cell lysates and in the chromatin fraction. We found that HP1α levels as well as different histones and H3K9me3 were reduced in patient fibroblasts. These results support previous studies showing interaction between SENP7 and HP1α, and suggest loss of SENP7 leads to reduced heterochromatin condensation and subsequent aberrant gene expression. CONCLUSION: Our results suggest a critical role for SENP7 in nervous system development, haematopoiesis and immune function in humans.

5.
Front Genet ; 13: 991721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204321

RESUMO

Introduction: Vici Syndrome is a rare, severe, neurodevelopmental/neurodegenerative disorder with multi-systemic manifestations presenting in infancy. It is mainly characterized by global developmental delay, seizures, agenesis of the corpus callosum, hair and skin hypopigmentation, bilateral cataract, and varying degrees of immunodeficiency, among other features. Vici Syndrome is caused by biallelic pathogenic variants in EPG5, resulting in impaired autophagy. Thus far, the condition has been reported in less than a hundred individuals. Objective and Methods: We aimed to characterize the clinical and molecular findings in individuals harboring biallelic EPG5 variants, recruited from four medical centers in Israel. Furthermore, we aimed to utilize a machine learning-based tool to assess facial features of Vici syndrome. Results: Eleven cases of Vici Syndrome from five unrelated families, one of which was diagnosed prenatally with subsequent termination of pregnancy, were recruited. A total of five disease causing variants were detected in EPG5: two novel: c.2554-5A>G and c.1461delC; and 3 previously reported: c.3447G>A, c.5993C>G, and c.1007A>G, the latter previously identified in several patients of Ashkenazi-Jewish (AJ) descent. Amongst 140,491 individuals screened by the Dor Yeshorim Program, we show that the c.1007A>G variant has an overall carrier frequency of 0.45% (1 in 224) among AJ individuals. Finally, based on two-dimensional facial photographs of individuals with Vici syndrome (n = 19), a composite facial mask was created using the DeepGestalt algorithm, illustrating facial features typical of this disorder. Conclusion: We report on ten children and one fetus from five unrelated families, affected with Vici syndrome, and describe prenatal and postnatal characteristics. Our findings contribute to the current knowledge regarding the molecular basis and phenotypic features of this rare syndrome. Additionally, the deep learning-based facial gestalt adds to the clinician's diagnostic toolbox and may aid in facilitating identification of affected individuals.

6.
Curr Alzheimer Res ; 19(10): 694-707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36278440

RESUMO

BACKGROUND: The clinical characteristics of symptomatic and asymptomatic carriers of early- onset autosomal dominant Alzheimer's (EOADAD) due to a yet-undescribed chromosomal rearrangement may add to the available body of knowledge about Alzheimer's disease and may enlighten novel and modifier genes. We report the clinical and genetic characteristics of asymptomatic and symptomatic individuals carrying a novel APP duplication rearrangement. METHODS: Individuals belonging to a seven-generation pedigree with familial cognitive decline or intracerebral hemorrhages were recruited. Participants underwent medical, neurological, and neuropsychological evaluations. The genetic analysis included chromosomal microarray, Karyotype, fluorescence in situ hybridization, and whole genome sequencing. RESULTS: Of 68 individuals, six females presented with dementia, and four males presented with intracerebral hemorrhage. Of these, nine were found to carry Chromosome 21 copy number gain (chr21:27,224,097-27,871,284, GRCh37/hg19) including the APP locus (APP-dup). In seven, Chromosome 5 copy number gain (Chr5: 24,786,234-29,446,070, GRCh37/hg19) (Chr5-CNG) cosegregated with the APP-dup. Both duplications co-localized to chromosome 18q21.1 and segregated in 25 pre-symptomatic carriers. Compared to non-carriers, asymptomatic carriers manifested cognitive decline in their mid-thirties. A third of the affected individuals carried a diagnosis of a dis-immune condition. CONCLUSION: APP extra dosage, even in isolation and when located outside chromosome 21, is pathogenic. The clinical presentation of APP duplication varies and may be gender specific, i.e., ICH in males and cognitive-behavioral deterioration in females. The association with immune disorders is presently unclear but may prove relevant. The implication of Chr5-CNG co-segregation and the surrounding chromosome 18 genetic sequence needs further clarification.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Feminino , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/diagnóstico , Estudos Transversais , Hibridização in Situ Fluorescente , Linhagem
7.
HGG Adv ; 3(3): 100111, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35571680

RESUMO

CSNK2B encodes for casein kinase II subunit beta (CK2ß), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and ß-catenin with mutated CK2ß. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated ß-catenin and consequent absence of active ß-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear ß-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS.

8.
Mol Genet Genomic Med ; 10(1): e1849, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34970863

RESUMO

BACKGROUND: We aimed to determine the molecular and biochemical basis of an extended highly consanguineous family with multiple children presenting severe congenital hypotonia. METHODS: Clinical investigations, homozygosity mapping, linkage analyses and whole exome sequencing, were performed. mRNA and protein levels were determined. Population screening was followed. RESULTS: We have identified a novel nonsense variant in NGLY1 in two affected siblings, and compound heterozygosity for three novel RYR1 variants in two affected sisters from another nuclear family within the broad pedigree. Population screening revealed a high prevalence of carriers for both diseases. The genetic variants were proven to be pathogenic, as demonstrated by western blot analyses. CONCLUSIONS: Revealing the genetic diagnosis enabled us to provide credible genetic counselling and pre-natal diagnosis to the extended family and genetic screening for this high-risk population. Whole exome/genome sequencing should be the first tier tool for accurate determination of the genetic basis of congenital hypotonia. Two different genetic disorders within a large consanguineous pedigree should be always considered.


Assuntos
Hipotonia Muscular , Doenças Musculares , Criança , Consanguinidade , Exoma , Família , Humanos , Hipotonia Muscular/genética , Doenças Musculares/genética , Linhagem
9.
J Endocr Soc ; 5(12): bvab151, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34877443

RESUMO

Type 1 autoimmune polyglandular syndrome (APS1) is a rare hereditary disease affecting nearly 600 patients worldwide. The first of its cardinal manifestations, chronic mucocutaneous candidiasis, hypoparathyroidism, or Addison's disease, presents in childhood. Additional nonclassical landmarks of APS1 continue to develop as late as the fifth decade of life. Two thirds of patients develop the full triad before 25 years of age. Only 20% of patients develop the entire triad simultaneously. Addison's disease is rarely reported as the first manifestation. According to APS1 classifications, restricted criteria for a single cardinal component, although elements of suspicion are not sufficient to diagnose APS1. This case report is peculiar as hypoadrenalism was the first and only manifestation of APS1 for nearly 3 decades since its diagnosis. Theoretically, exceptions from the protocol of APS1 diagnostic criteria would be recognized as acceptable for diagnosis in the future, when similar case reports of only 1 component of APS1 appear.

10.
J Hum Genet ; 66(11): 1101-1112, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33980986

RESUMO

RBL2/p130, a member of the retinoblastoma family of proteins, is a key regulator of cell division and propagates irreversible senescence. RBL2/p130 is also involved in neuronal differentiation and survival, and eliminating Rbl2 in certain mouse strains leads to embryonic lethality accompanied by an abnormal central nervous system (CNS) phenotype. Conflicting reports exist regarding a role of RBL2/p130 in transcriptional regulation of DNA methyltransferases (DNMTs), as well as the control of telomere length. Here we describe the phenotype of three patients carrying bi-allelic RBL2-truncating variants. All presented with infantile hypotonia, severe developmental delay and microcephaly. Malignancies were not reported in carriers or patients. Previous studies carried out on mice and human cultured cells, associated RBL2 loss to DNA methylation and telomere length dysregulation. Here, we investigated whether patient cells lacking RBL2 display related abnormalities. The study of primary patient fibroblasts did not detect abnormalities in expression of DNMTs. Furthermore, methylation levels of whole genome DNA, and specifically of pericentromeric repeats and subtelomeric regions, were unperturbed. RBL2-null fibroblasts show no evidence for abnormal elongation by telomeric recombination. Finally, gradual telomere shortening, and normal onset of senescence were observed following continuous culturing of RBL2-mutated fibroblasts. Thus, this study resolves uncertainties regarding a potential non-redundant role for RBL2 in DNA methylation and telomere length regulation, and indicates that loss of function variants in RBL2 cause a severe autosomal recessive neurodevelopmental disorder in humans.


Assuntos
Disfunção Cognitiva/genética , Metilação de DNA/genética , Proteína p130 Retinoblastoma-Like/genética , Encurtamento do Telômero/genética , Adolescente , Adulto , Alelos , Animais , Criança , Disfunção Cognitiva/complicações , Disfunção Cognitiva/fisiopatologia , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Fibroblastos/metabolismo , Predisposição Genética para Doença , Humanos , Masculino , Metiltransferases/genética , Camundongos , Microcefalia/complicações , Microcefalia/genética , Microcefalia/fisiopatologia , Atividade Motora/fisiologia , Hipotonia Muscular/complicações , Hipotonia Muscular/genética , Hipotonia Muscular/fisiopatologia , Telômero/genética , Sequenciamento do Exoma
11.
Clin Genet ; 98(4): 353-364, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33111345

RESUMO

Mutations in more than 150 genes are responsible for inherited hearing loss, with thousands of different, severe causal alleles that vary among populations. The Israeli Jewish population includes communities of diverse geographic origins, revealing a wide range of deafness-associated variants and enabling clinical characterization of the associated phenotypes. Our goal was to identify the genetic causes of inherited hearing loss in this population, and to determine relationships among genotype, phenotype, and ethnicity. Genomic DNA samples from informative relatives of 88 multiplex families, all of self-identified Jewish ancestry, with either non-syndromic or syndromic hearing loss, were sequenced for known and candidate deafness genes using the HEar-Seq gene panel. The genetic causes of hearing loss were identified for 60% of the families. One gene was encountered for the first time in human hearing loss: ATOH1 (Atonal), a basic helix-loop-helix transcription factor responsible for autosomal dominant progressive hearing loss in a five-generation family. Our results show that genomic sequencing with a gene panel dedicated to hearing loss is effective for genetic diagnoses in a diverse population. Comprehensive sequencing enables well-informed genetic counseling and clinical management by medical geneticists, otolaryngologists, audiologists, and speech therapists and can be integrated into newborn screening for deafness.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Surdez/genética , Predisposição Genética para Doença , Perda Auditiva/genética , Adolescente , Adulto , Criança , Pré-Escolar , Surdez/epidemiologia , Surdez/patologia , Feminino , Estudos de Associação Genética , Perda Auditiva/epidemiologia , Perda Auditiva/patologia , Humanos , Israel/epidemiologia , Judeus/genética , Masculino , Linhagem , Adulto Jovem
12.
Breast Cancer Res Treat ; 178(1): 231-237, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31368036

RESUMO

PURPOSE: While the spectrum of germline mutations in BRCA1/2 genes in the Israeli Jewish population has been extensively studied, there is a paucity of data pertaining to Israeli Arab high-risk cases. METHODS: Consecutive Israeli Arab breast and/or ovarian cancer patients were recruited using an ethically approved protocol from January 2012 to February 2019. All ovarian cancer cases were referred for BRCA genotyping. Breast cancer patients were offered BRCA sequencing and deletion/duplication analysis after genetic counseling, if the calculated risk for carrying a BRCA mutation by risk prediction algorithms was ≥10%. RESULTS: Overall, 188 patients participated; 150 breast cancer cases (median age at diagnosis: 40 years, range 22-67) and 38 had ovarian cancer (median age at diagnosis: 52.5 years, range 26-79). Of genotyped cases, 18 (10%) carried one of 12 pathogenic or likely-pathogenic variants, 12 in BRCA1, 6 in BRCA2. Only one was a rearrangement. Three variants recurred in more than one case; one was detected in five seemingly unrelated families. The detection rate for all breast cancer cases was 4%, 5% in bilateral breast cancer cases and 3% if breast cancer was diagnosed < 40 years. Of patients with ovarian cancer, 12/38 (32%) were carriers; the detection rate reached 75% (3/4) among patients diagnosed with both breast and ovarian cancer. CONCLUSIONS: The overall yield of comprehensive BRCA1/2 testing in high-risk Israeli Arab individuals is low in breast cancer patients, and much higher in ovarian cancer patients. These results may guide optimal cancer susceptibility testing strategy in the Arab-Israeli population.


Assuntos
Árabes/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Técnicas de Genotipagem/métodos , Neoplasias Ovarianas/diagnóstico , Adulto , Idoso , Neoplasias da Mama/genética , Detecção Precoce de Câncer , Feminino , Aconselhamento Genético , Predisposição Genética para Doença , Variação Genética , Mutação em Linhagem Germinativa , Humanos , Israel/etnologia , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Adulto Jovem
13.
Early Hum Dev ; 119: 25-28, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29522884

RESUMO

INTRODUCTION: Fetal echogenic bowel is a frequent sonographic finding, demonstrated in about 1% of pregnancies. The advised evaluation of fetal echogenic bowel includes maternal serology, genetic testing for cystic fibrosis, detailed sonographic anatomic survey, and invasive prenatal testing for fetal chromosomal aberrations. The objective of our study was to evaluate the risk for clinically significant chromosomal microarray analysis (CMA) findings in pregnancies with isolated echogenic bowel. METHODS: Data from all CMA analyses performed due to isolated echogenic bowel reported to the Israeli Ministry of Health between January 2013 and September 2016 were retrospectively obtained. Risk estimation was performed comparing the rate of abnormal microarray findings to the control population, based on a systematic review of 9272 pregnancies and a large local cohort of 5541 fetuses with normal ultrasound, undergoing CMA testing due to maternal request. RESULTS: Of 103 CMA analyses performed due to isolated echogenic bowel, two (1.94%) pathogenic findings were detected (47,XYY and 16p11.2 duplication). This risk was not significantly elevated compared to the control groups. In addition, three variants of unknown significance were demonstrated. CONCLUSIONS: To our best knowledge, our study is the first report describing the rate of clinically significant copy number variants in pregnancies with isolated echogenic bowel. According to our results, it seems that pregnancies with isolated echogenic bowel do not have an increased risk for abnormal CMA compared to fetuses with no evidence of sonographic anomalies. Our findings suggest that the consideration to perform CMA analysis in such pregnancies should not differ from any pregnancy with normal ultrasound.


Assuntos
Aberrações Cromossômicas , Intestino Ecogênico/diagnóstico por imagem , Doenças Fetais/genética , Diagnóstico Pré-Natal/métodos , Feminino , Doenças Fetais/diagnóstico por imagem , Humanos , Análise em Microsséries , Gravidez , Estudos Retrospectivos , Ultrassonografia Pré-Natal
14.
Harefuah ; 156(3): 156-162, 2017 Mar.
Artigo em Hebraico | MEDLINE | ID: mdl-28551940

RESUMO

INTRODUCTION: Primary Hyperoxaluria type I (PH1) is a rare autosomal recessive disease caused by lack or dysfunction of the liver peroxisomal enzyme alanine: glyoxylate aminotransferase, AGT. AIMS: To conduct clinical and genetic characterization of Druze and Muslim Arab patients with PH1 in Northern Israel. METHODS: In the last 20 years, 36 children and families were diagnosed and treated in the Nephrology-Genetic Clinic at the Galilee Medical Center. Clinical evaluation for nephrocalcinosis with/without renal stones, elevated excretion of oxalate and glycolate in urine, and genetic workup were performed. Treatment included hemodialysis, and/or peritoneal dialysis. Some patients were directed to preemptive liver transplantation or to combined liver and kidney transplantation. Genetic counseling and prenatal diagnosis were conducted. RESULTS: Thirty-six patients, from newborns to adults in their 20's, were diagnosed with PH1. They represent 38.8% of patients in the pediatric-dialysis unit. The genetic variant in the AGXT gene causing their disease was identified. Nine prenatal diagnoses were performed, and a genetic screening program was implemented in four Druze villages in the Galilee and Golan Heights. CONCLUSIONS: PH1 is a prevalent disease among Druze and Muslim Arabs in northern Israel. Genetic diagnosis is the gold standard and enables early diagnosis and treatment. Genotype-phenotype correlations are complex. Population screening programs provide an important tool for prevention. DISCUSSION: The "genetic islands" of PH1 in northern Israel require a community-based medical approach for the prevention of the disease and the treatment of presymptomatic patients for better prognosis.


Assuntos
Hiperoxalúria Primária/epidemiologia , Cálculos Renais/genética , Oxalatos/análise , Transaminases/genética , Árabes , Criança , Humanos , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia , Islamismo , Israel , Mutação
15.
Brain ; 140(2): 370-386, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007986

RESUMO

Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A2-activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E2 and cytosolic phospholipase A2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E2 and cytosolic phospholipase A2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E2 The non-functional phospholipase A2-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance.


Assuntos
Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Leucoencefalopatias/fisiopatologia , Proteínas/genética , Proteínas/metabolismo , Adolescente , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Criança , Consanguinidade , Dinoprostona/metabolismo , Embrião de Mamíferos , Saúde da Família , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Regulação da Expressão Gênica/genética , Humanos , Leucoencefalopatias/diagnóstico por imagem , Pulmão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , NF-kappa B/metabolismo , Fosfolipases A2/metabolismo , Pele/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA