Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 133990, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39098459

RESUMO

This study investigated the effectiveness of a pectin-nano zero-valent iron-based nanocomposite in adsorbing heavy metals in bimetallic form (chromium­lead mixture), along with assessing its antibacterial properties. The nanocomposite was synthesized using a straightforward dispersion method, employing eco-friendly components like biocompatible pectin sourced from banana peels and nano-scale zero-valent iron. Analytical characterization confirmed the formation of stable, nano-crystalline particles with active interactions between the functional groups of pectin and nano iron. Batch adsorption experiments optimized various parameters such as pH, adsorbent dosage, contact time, metal ion concentration, and temperature to enhance bimetal removal from water. The optimal conditions were determined as pH 8.0, a temperature of 40 °C, 1.0 g/L adsorbent dosage, 75 mg/l initial bimetal concentration, and a contact time of 30 min. Further assessments revealed that the nanocomposite did not induce phytotoxic or ecotoxic effects, confirming its non-toxicity and environmental safety. Biocompatibility studies conducted using zebrafish models showed no adverse effects on hatching, survival, or heart rate. These findings underscore the potential of the nanocomposite as a sustainable and efficient solution for heavy metal remediation in water treatment process.

2.
Int J Biol Macromol ; 259(Pt 1): 129264, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199548

RESUMO

Biocomposites based on starch- gum acacia- agar, chitosan- starch- agar, starch- poly vinyl alcohol- agar were synthesized by simple, green route principles and the various characterization techniques like fourier infrared spectroscopy, SEM revealed the highly stable micro dimenstional that specially interacted with functional groups of polymers -herbicidal metabolites. Respective biocomposite was prepared by mixing equal volume of the selected polymer (1;1;1 ratio) with known concentration (100 mg of in distilled water followed by the addition of reconstituted herbicidal metabolites (100 mg or 0.1 g). Though all the biocomposites were capable of inducing herbicidal effect, notable impact was recorded in chitosan- starch- gum acacia treatment. In this case, the necrotic lesions were initiated at the early incubation period (6 h), progressively developing into dark brownish black lesions with 30.0 mm diameter. Release profile of the metabolites from the respective composite was also under in vitro and soil assay. Release profile study under in vitro and soil condition showed the sustained or controlled manner in distilled water and ethyl acetate treatment. No sign of toxic effect on the soil, parameters plant growth, rhizobacteria and peripheral blood cells clearly revealed the best biocompatibility of the presently proposed biocomposite.


Assuntos
Quitosana , Herbicidas , Quitosana/química , Amido/química , Goma Arábica , Ágar , Polímeros , Água , Solo
3.
Environ Res ; 231(Pt 2): 116150, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209987

RESUMO

The present study evaluates the biocompatibility of silver and zinc oxide nanoparticles with various effective microorganisms (EM), like beneficial microbial formulations. The respective nanoparticle was synthesised by chemical reduction of metal precursor with reducer via simple route green technology principles. The synthesised nanoparticles were characterised by UV visible spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) studies, revealing highly stable, nanoscale particles with marked crystallinity. EM-like beneficial cultures composed of viable cells of Lactobacillus lactis, Streptomyces sp, Candida lipolytica, and Aspergillus oryzae were formulated with rice bran, sugarcane syrup, and groundnut cake. The respective formulation was inoculated into the nanoparticles amalgamated pots raised with green gram seedlings. Biocompatibility was determined by measuring plant growth parameters of a green gram at pre-determined periods associated with enzymatic antioxidants like catalase (CAT), superoxide dismutase (SOD), and glutathione S transferase (GST) levels. Most significantly, the expression level of these enzymatic antioxidants level was also investigated by quantitative real-time polymerase chain reaction (qRT-PCR). The impact of the soil conditioning effect on soil nutrients like nitrogen, phosphorous, potassium, organic carbon, soil enzymes glucosidases, and ß-xylosidases activity was also studied. Among the formulation, rice bran-groundnut cake-sugar syrup formulation recorded the best biocompatibility. This formulation showed high growth promotion, soil conditioning effect and no impact on the oxidative stress enzymes genes that revealed the best compatibility of nanoparticles. This study concluded that biocompatible, eco-friendly formulations of microbial inoculants could be used for the desirable agro active properties that show extreme tolerance or biocompatibility to the nanoparticles. This present study also suggests the utilisation of the above said beneficial microbial formulation and metal-based nanoparticles with desirable agro active properties in a synergistic manner due to their high tolerance or compatibility towards the metal or metal oxide nanoparticles.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Antioxidantes/metabolismo , Óxidos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Estresse Oxidativo , Óxido de Zinco/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
4.
Appl Biochem Biotechnol ; 195(3): 1837-1861, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36399305

RESUMO

Using natural and synthetic polymers as the components for the core-shell nanocomposite preparation has received recent attention in biomedicine due to their high biocompatibility, high efficacy, and biodegradability. In this present investigation, chitosan-polyvinyl alcohol core-shell gold nanocomposite was synthesised adopting green science principles followed by fabrication with fluoroquinolone antibiotic levofloxacin (LE-CS-PVA-AuNC). Core-shell nanocomposite was prepared from biogenic gold nanoparticles, chitosan, polyvinyl alcohol polymer mixture, and levofloxacin under optimum conditions, and the synthesised nanocomposite exhibited a highly stable nanoarchitecture. Enhancement of antibacterial activity of the nanocomposite was evaluated against the clinical strain of Pseudomonas aeruginosa by determination of growth inhibition, survival rate parameters, and biofilm inhibition rate. Levofloxacin-fabricated core-shell nanocomposite brought about higher growth inhibition than the free levofloxacin, which was confirmed by a notable zone of inhibition, growth inhibition at a lower concentration, rapid biofilm inhibitory rate, and changes in survival growth parameters. In vitro drug release pattern was studied by continuous dialysis, which reveals that the nanocomposite exhibited controlled, sustained release pattern and cumulative release reached almost 98.0% at 72 h. Biocompatibility was studied with human keratinocytes (HaCaT cell line), which was studied by measuring cell viability, oxidative stress marker protein, and genotoxicity. The tested nanocomposite was not inducing any sign of toxicity which was confirmed by no marked impact on cell viability, intracellular reduced glutathione, lipid peroxidase, and lactate dehydrogenase activity. In addition, the nanocomposite has not shown any toxic effect on DNA, and all findings indicate that the synthesised nanocomposite was compatible with human keratinocytes. LE-CS-PVA-AuNC synthesised in the present system adopting green science principles can be used in modern biomedicine as an effective and safe antimicrobial agent due to its high antimicrobial action against wound infection pathogens and its best compatibility with human keratinocytes.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas Metálicas , Nanocompostos , Humanos , Levofloxacino/farmacologia , Pseudomonas aeruginosa , Ouro/farmacologia , Álcool de Polivinil , Diálise Renal , Antibacterianos/farmacologia , Polímeros
5.
Chemosphere ; 308(Pt 2): 135950, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36075361

RESUMO

Nanomaterials mainly nanocomposites possess unique physical and chemical properties which makes them superior and indispensable. Though much research has been focused on the properties and application of nanocomposites, the eco-toxicity assessment is one among top priority, which aims to protect the population of concerned biological component and their ecosystem. With this objective, the present study has undertaken an initiation to evaluate the efficacy of chitosan-silver nanocomposite for methyl orange adsorption property (CS-AgNC) and also assessed the toxicity impact on growth parameters of freshwater Tilapia. Batch in vitro studies showed that all the tested dosages of the nanocomposite were effectively adsorbing maximum concentration of methyl orange. The synthesized nanocomposite was administrated to the tested fishes followed by the determination of various growth, nutritional parameters, gene expression of enzymatic antioxidants and liver, and intestinal tissues histology. Obtained results indicated that nanocomposite treatment was not projected as a toxic impact on all the tested growth, and nutritional parameters. Histology study showed that the exposure of Tilapia to nanocomposite has not shown any detrimental effect on antioxidants gene expression and liver, intestinal tissue architecture. Hence, all these findings indicated that chitosan-silver nanocomposite prepared in our present system was found to be biocompatible which suggested the possible utilization and release of the nanocomposite into the divergent ecosystem without affecting non-target organisms (NTO).


Assuntos
Quitosana , Nanocompostos , Tilápia , Adsorção , Animais , Compostos Azo , Quitosana/química , Ecossistema , Água Doce , Nanocompostos/química , Nanocompostos/toxicidade , Prata/química , Prata/toxicidade
6.
Environ Res ; 212(Pt C): 113386, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35569536

RESUMO

In this present study, a highly stable gum acacia -gold nanocomposite fabricated with food preservative agent natamycin (GA-AuNC-NT) was prepared via green science principles under in vitro conditions. Various characterisation techniques reveal highly stable structural, functional properties of the synthesised nanocomposite with marked antifungal activity and adsorption efficacy against congo red dye. The antifungal activity was investigated against the fungal strain Aspergillus ochraceopealiformis isolated from spoiled, expired bread. The well diffusion assay, fungal hyphae fragmentation assay and spore germination inhibition assay were used to determine the antifungal activity of the synthesised nanocomposite. Potential antifungal activity of the synthesised nanocomposite was confirmed by recording zone of inhibition, high rate of hyphae fragmentation and marked spore germination inhibition against the tested fungal strain. The molecular mechanism of antifungal activity was studied by measuring oxidative stress marker genes like catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) induction adopting quantitative real-time polymerase chain reaction (q RT-PCR). Among the various treatment, a notable reduction in all the tested marker genes expression was recorded in the nanocomposite treated fungal strain. Release profile studies using different solvents reveals sustained or controlled release of natamycin at the increasing periods. The synthesised nanocomposite's high safety or biocompatibility was evaluated with the Wistar animal model by determining notable changes in behavioural, biochemical, haematological and histopathological parameters. The synthesised nanocomposite did not exhibit any undesirable changes in all the tested parameters confirming the marked biosafety or biocompatibility. The nanocomposite was coated on the bread packaging material. The effect of packaging on the proximate composition, antioxidative enzymes status, and fungal growth of bread samples incubated under the incubation period were studied. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) studies reveal that the nanocomposite was effectively coated on the packaging material without changing size, shape, and functional groups. No changes in the proximate composition and antioxidative enzymes of the packaged bread samples incubated under different incubation periods reveal the nanocomposite's marked safety. The complete absence of the fungal growth also indicates the uniqueness of the nanocomposite. Further, the sorption studies revealed the utilisation of Langmuir mechanism and pseudo II order model successfully The present finding implies that the synthesised nanocomposite can be used as an effective, safe food preservative agent and adsorbent of toxic chemicals.


Assuntos
Vermelho Congo , Nanocompostos , Adsorção , Animais , Antifúngicos/farmacologia , Aspergillus , Conservantes de Alimentos , Fungos , Ouro , Goma Arábica , Nanocompostos/química , Natamicina/farmacologia
7.
J Med Virol ; 92(6): 632-638, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32124990

RESUMO

There is an obvious concern globally regarding the fact about the emerging coronavirus 2019 novel coronavirus (2019-nCoV) as a worldwide public health threat. As the outbreak of COVID-19 causes by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) progresses within China and beyond, rapidly available epidemiological data are needed to guide strategies for situational awareness and intervention. The recent outbreak of pneumonia in Wuhan, China, caused by the SARS-CoV-2 emphasizes the importance of analyzing the epidemiological data of this novel virus and predicting their risks of infecting people all around the globe. In this study, we present an effort to compile and analyze epidemiological outbreak information on COVID-19 based on the several open datasets on 2019-nCoV provided by the Johns Hopkins University, World Health Organization, Chinese Center for Disease Control and Prevention, National Health Commission, and DXY. An exploratory data analysis with visualizations has been made to understand the number of different cases reported (confirmed, death, and recovered) in different provinces of China and outside of China. Overall, at the outset of an outbreak like this, it is highly important to readily provide information to begin the evaluation necessary to understand the risks and begin containment activities.


Assuntos
Algoritmos , Betacoronavirus/patogenicidade , Infecções por Coronavirus/epidemiologia , Conhecimentos, Atitudes e Prática em Saúde , Pandemias , Pneumonia Viral/epidemiologia , COVID-19 , Gráficos por Computador , Convalescença , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Humanos , Cooperação Internacional , Pandemias/prevenção & controle , Pneumonia Viral/diagnóstico , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Saúde Pública/estatística & dados numéricos , SARS-CoV-2 , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA