Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 20(11): 1276-1286, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33179971

RESUMO

From February 1 to 28, 2018, the Austrian Space Forum, in cooperation with the Oman Astronomical Society and research teams from 25 nations, conducted the AMADEE-18 mission, a human-robotic Mars expedition simulation in the Dhofar region in the Sultanate of Oman. A carefully selected field crew, supported by a Mission Support Center in Innsbruck, Austria, conducted 19 experiments relevant to astrobiology, engineering disciplines, geoscience, operations research, and human factors. This expedition was the 12th in a series of analog missions that emulate selected aspects of the science expected for a human Mars mission, including the characterization of the (paleo)geological environment, human factors studies, and the search for biomarkers. In particular, an Exploration Cascade was deployed as a suggested workflow for coordinating the timing and location of the respective instruments and experiments. In validation of this workflow, the decision-making interaction between the field and the Mission Support Center was studied. This article introduces the AMADEE-18 mission and provides the mission-specific context for the other contributions of this special issue.


Assuntos
Expedições , Marte , Voo Espacial , Simulação de Ambiente Espacial , Exobiologia , Humanos , Omã
2.
Astrobiology ; 14(5): 360-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24823799

RESUMO

We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.


Assuntos
Marte , Simulação de Ambiente Espacial , Abrigo de Emergência , Humanos , Marrocos , Pesquisa
3.
Astrobiology ; 12(2): 125-34, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22300413

RESUMO

We have developed the space suit simulator Aouda.X, which is capable of reproducing the physical and sensory limitations a flight-worthy suit would have on Mars. Based upon a Hard-Upper-Torso design, it has an advanced human-machine interface and a sensory network connected to an On-Board Data Handling system to increase the situational awareness in the field. Although the suit simulator is not pressurized, the physical forces that lead to a reduced working envelope and physical performance are reproduced with a calibrated exoskeleton. This allows us to simulate various pressure regimes from 0.3-1 bar. Aouda.X has been tested in several laboratory and field settings, including sterile sampling at 2800 m altitude inside a glacial ice cave and a cryochamber at -110°C, and subsurface tests in connection with geophysical instrumentation relevant to astrobiology, including ground-penetrating radar, geoacoustics, and drilling. The communication subsystem allows for a direct interaction with remote science teams via telemetry from a mission control center. Aouda.X as such is a versatile experimental platform for studying Mars exploration activities in a high-fidelity Mars analog environment with a focus on astrobiology and operations research that has been optimized to reduce the amount of biological cross contamination. We report on the performance envelope of the Aouda.X system and its operational limitations.


Assuntos
Contenção de Riscos Biológicos , Atividade Extraespaçonave , Trajes Espaciais , Humanos , Marte , Simulação de Ambiente Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA