Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675139

RESUMO

A mild and efficient protocol for the synthesis of p-quinols under aqueous conditions was developed. The pivotal role of additives in the copper-catalyzed addition of aryl boronic and heteroaryl boronic acids to benzoquinones was observed. It was found that polyvinylpyrrolidone (PVP) was the most efficient additive used for the studied reaction. The noteworthy advantages of this procedure include its broad substrate scope, high yields up to 91%, atom economy, and usage of readily available starting materials. Another benefit of this method is the reusability of the catalytic system up to four times. Further, the obtained p-quinols were characterized on the basis of their antimicrobial activities against E. coli. Antimicrobial activity was further compared with the corresponding 4-benzoquinones and 4-hydroquinones. Among tested compounds, seven derivatives showed an antimicrobial activity profile similar to that observed for commonly used antibiotics such as ciprofloxacin, bleomycin, and cloxacillin. In addition, the obtained p-quinols constitute a suitable platform for further modifications, allowing for a convenient change in their biological activity profile.


Assuntos
Cobre , Hidroquinonas , Cobre/farmacologia , Cobre/química , Escherichia coli , Ácidos Borônicos/farmacologia , Ácidos Borônicos/química , Benzoquinonas , Antibacterianos/farmacologia , Catálise
2.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955950

RESUMO

An enzymatic route for phosphorous-carbon bond formation was developed by discovering new promiscuous activity of lipase. We reported a new metal-free biocatalytic method for the synthesis of pharmacologically relevant ß-phosphonomalononitriles via a lipase-catalyzed one-pot Knoevenagel-phospha-Michael reaction. We carefully analyzed the best conditions for the given reaction: the type of enzyme, temperature, and type of solvent. A series of target compounds was synthesized, with yields ranging from 43% to 93% by enzymatic reaction with Candida cylindracea (CcL) lipase as recyclable and, a few times, reusable catalyst. The advantages of this protocol are excellent yields, mild reaction conditions, low costs, and sustainability. The applicability of the same catalyst in the synthesis of ß-phosphononitriles is also described. Further, the obtained compounds were validated as new potential antimicrobial agents with characteristic E. coli bacterial strains. The pivotal role of such a group of phosphonate derivatives on inhibitory activity against selected pathogenic E. coli strains was revealed. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics. The impact of the ß-phosphono malonate chemical structure on antimicrobial activity was demonstrated. The crucial role of the substituents attached to the aromatic ring on the inhibitory action against selected pathogenic E. coli strains was revealed. Among tested compounds, four ß-phosphonate derivatives showed an antimicrobial activity profile similar to that obtained with currently used antibiotics such as ciprofloxacin, bleomycin, and cloxacillin. In addition, the obtained compounds constitute a convenient platform for further chemical functionalization, allowing for a convenient change in their biological activity profile. It should also be noted that the cost of the compounds obtained is low, which may be an attractive alternative to the currently used antimicrobial agents. The observed results are especially important because of the increasing resistance of bacteria to various drugs and antibiotics.


Assuntos
Anti-Infecciosos , Organofosfonatos , Antibacterianos/farmacologia , Catálise , Escherichia coli , Lipase/química
3.
Molecules ; 27(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35889218

RESUMO

Chiral amines and alcohols are synthons of numerous pharmaceutically-relevant compounds. The previously developed enzymatic kinetic resolution approaches utilize a chiral racemic molecule and achiral acyl donor (or acyl acceptor). Thus, only one enantiodivergent step of the catalytic cycle is engaged, which does not fully exploit the enzyme's abilities. The first carbonate-mediated example of simultaneous double chemoselective kinetic resolution of chiral amines and alcohols is described. Herein, we established a biocatalytic approach towards four optically-pure compounds (>99% ee, Enantioselectivity: E > 200) via double enzymatic kinetic resolution, engaging chiral organic carbonates as acyl donors. High enantioselectivity was ensured by extraordinary chemoselectivity in lipase-catalyzed formation of unsymmetrical organic carbonates and engaged in a process applicable for the synthesis of enantiopure organic precursors of valuable compounds. This study focused not only on preparative synthesis, but additionally the catalytic mechanism was discussed and the clear impact of this rarely observed carbonate-derived acyl enzyme was shown. The presented protocol is characterized by atom efficiency, acyl donor sustainability, easy acyl group removal, mild reaction conditions, and biocatalyst recyclability, which significantly decreases the cost of the reported process.


Assuntos
Álcoois , Aminas , Biocatálise , Carbonatos , Cinética , Lipase/metabolismo , Estereoisomerismo
4.
Materials (Basel) ; 15(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683150

RESUMO

We reported a new method dealing with the synthesis of novel pharmacologically relevant α-aminophosphonate derivatives via a lipase-catalyzed Kabachnik−Fields reaction with yields of up to 93%. The advantages of this protocol are excellent yields, mild reaction conditions, low costs, and sustainability. The developed protocol is applicable to a range of H-phosphites and organic amines, providing a wide substrate scope. A new class of α-aminophosphonate analogues possessing P-chiral centers was also synthesized. The synthesized compounds were characterized on the basis of their antimicrobial activities against E. coli. The impact of the various alkoxy groups on antimicrobial activity was demonstrated. The crucial role of the substituents, located at the aromatic rings in the phenylethyloxy and benzyloxy groups, on the inhibitory action against selected pathogenic E. coli strains was revealed. The observed results are especially important because of increasing resistance of bacteria to various drugs and antibiotics.

5.
Bioorg Chem ; 124: 105815, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512419

RESUMO

The novel biocatalytic method for the synthesis of pharmaceutically relevant N-unsubstituted amidines was presented. The application of whole cells from commonly available vegetables allowed for the chemoselective reduction of the amidoxime moiety in the presence of other substituents prone to reduction or dehalogenation e.g. carbon-carbon double bond. Under optimized conditions several amidines were obtained with high yield up to 97% in aqueous medium at ambient temperature and atmospheric pressure. The practical potential of the newly developed method was shown in the preparative synthesis of anti-parasitic drug, phenamidine. Moreover, for the first time the enantioselective bioreduction of chiral racemic amidoximes to the corresponding amidines has been shown. The developed sustainable biocatalytic protocol fulfils the green chemistry rules and no application of metal catalysts meets the strict requirements of the pharmaceutical industry regarding metal contamination.


Assuntos
Oxirredutases , Saccharomyces cerevisiae , Amidinas/química , Biocatálise , Carbono , Oxirredutases/metabolismo , Oximas , Raízes de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estereoisomerismo
6.
Materials (Basel) ; 15(5)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35269205

RESUMO

An enzymatic route for phosphorous-carbon- bond formation is developed by discovering new promiscuous activity of lipase. This biocatalytic transformation of phosphorous-carbon- bond addition leads to biologically and pharmacologically relevant α-acyloxy phosphonates with methyl group in α-position. A series of target compounds were synthesized with yields ranging from 54% to 83% by enzymatic reaction with Candida cylindracea (CcL) lipase via Markovnikov addition of H-phosphites to vinyl esters. We carefully analyzed the best conditions for the given reaction such as the type of enzyme, temperature, and type of solvent. The developed protocol is applicable to a range of H-phosphites and vinyl esters significantly simplifying the preparation of synthetically challenging α-pivaloyloxy phosphonates. Further, the obtained compounds were validated as new potential antimicrobial drugs with characteristic E. coli bacterial strains and DNA modification recognized by the Fpg protein, N-methyl purine glycosylases as new substrates. The impact of the methyl group located in the α-position of the studied α-acyloxy phosphonates on the antimicrobial activity was demonstrated. The pivotal role of this group on inhibitory activity against selected pathogenic E. coli strains was revealed. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics.

7.
Materials (Basel) ; 14(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34947169

RESUMO

The biological research on newly synthesized amidoximes, Boc-protected amidoximes and Boc-derived amidines, obtained by a reduction of the parent amidoximes is reported, herein. Due to the presence of a free amino group in both amidines and amidoximes, these compounds can undergo various chemical reactions such as N-alkylation and N-acylation. One such reaction is Boc-protection, often used in organic synthesis to protect the amino and imino groups. Until now, Boc-protected amidoximes have not been tested for biological activity. Amidoxime derivatives were tested on bacterial E. coli strains. Initial cellular studies tests and digestion with Fpg after the modification of bacterial DNA, suggest that these compounds may have greater potential as antibacterial agents compared to antibiotics such as ciprofloxacin (ci), bleomycin (b) and cloxacillin (cl). The described compounds are highly specific for pathogenic E. coli strains on the basis of the model strains used and may be used in the future as new substitutes for commonly used antibiotics in clinical and hospital infections in the pandemic era.

8.
Anal Bioanal Chem ; 412(29): 8145-8153, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32968852

RESUMO

Over the past few years, superparamagnetic iron oxide nanoparticles (SPIONs) have attracted much attention due to their medicinally attractive properties and their possible application in cancer diagnosis and therapy. However, there is still a lack of appropriate methods to enable quantitative monitoring of the particle changes in a physiological environment, which could be beneficial for evaluating their in vitro and in vivo behavior. For this reason, the main goal of this study was the development of a novel capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS/MS) method for the determination of SPIONs suitable for the future examination of their changes upon incubation with proteins under simulated physiological conditions. The type and flow rate of the collision/reaction gas were chosen with the aim of simultaneous monitoring of Fe and S. The type and concentration of the background electrolyte, applied voltage, and sample loading were optimized to obtain SPION signals of the highest intensity and minimum half-width of the peak. Analytical parameters were at a satisfactory level: reproducibility (intra- and inter-day) of migration times and peak areas (presented as RSD) in the range of 0.23-4.98%, recovery: 96.7% and 93.3%, the limit of detection (for monitoring 56Fe16O+ by mass-shift approach) 54 ng mL-1 Fe (0.97 µM) and 101 ng mL-1 Fe (1.82 µM) for SPIONs with carboxyl and amino terminal groups, respectively. To the best of our knowledge, this is the first reported use of CE-ICP-MS/MS for the quantification of SPIONs and monitoring of interactions with proteins.


Assuntos
Eletroforese Capilar/métodos , Compostos Férricos/química , Nanopartículas Metálicas/química , Espectrometria de Massas em Tandem/métodos , Proteínas Sanguíneas/química , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA