RESUMO
This study addressed the functionality of genetic circuits carrying natural regulatory elements of Clostridium acetobutylicum ATCC 824 in the presence of the respective inducer molecules. Specifically, promoters and their regulators involved in diverse carbon source utilization were characterized using mCherryOpt or beta-galactosidase as a reporter. Consequently, most of the genetic circuits tested in this study were functional in Clostridium acetobutylicum ATCC 824 in the presence of an inducer, leading to the expression of reporter proteins. These genetic sensor-regulators were found to be transferable to another Clostridium species, such as Clostridium beijerinckii NCIMB 8052. The gradual expression of reporter protein was observed as a function of the carbohydrates of interest. A xylose-inducible promoter allows a titratable and robust expression of a reporter protein with stringency and efficacy. This xylose-inducible circuit was seen to enable induction of the expression of reporter proteins in the presence of actual sugar mixtures incorporated in woody hydrolysate wherein glucose and xylose are present as predominant carbon sources.
Assuntos
Clostridium acetobutylicum/genética , Regiões Promotoras Genéticas , beta-Galactosidase/genética , Clostridium acetobutylicum/enzimologia , Clostridium acetobutylicum/metabolismo , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Fermentação , Genes Reguladores , Genes Reporter , Glucose/metabolismo , Plasmídeos , Transformação Bacteriana , Xilose/metabolismo , beta-Galactosidase/metabolismoRESUMO
It is of great economic interest to produce succinate from low-grade carbon sources, e.g., lignocellulosic biomass hydrolysate, which mainly contains glucose and xylose. Inactivation of the glucose uptake system PtsG was evaluated for succinate production from xylose-rich feedstocks. Strains with integration of succinate production modules into the chromosome of Escherichia coli were then constructed. These strains have better succinate production performance from xylose-rich feedstocks than strain FZ560 harboring pHL413KF1. Glucose utilization was enhanced in FZ661T by manipulation of the gal operon to allow efficient use of the high-concentration glucose in woody biomass hydrolysate. Up to 906.7 mM (107.0 g/L) succinate was produced from mixed sugars in fed-batch fermentation and more than 461.7 mM (54.5 g/L) succinate was produced from woody hydrolysate in a batch fermentation. In this study, FZ661T was able to produce succinate from woody hydrolysate in minimal medium efficiently, making it attractive for industrial applications in succinate production.
Assuntos
Escherichia coli/metabolismo , Engenharia Metabólica , Ácido Succínico/metabolismo , Madeira/metabolismo , Anaerobiose , Biomassa , Escherichia coli/genética , Fermentação , Glucose/metabolismo , Hidrólise , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Xilose/metabolismoRESUMO
It is of great economic interest to produce succinate from low-grade carbon sources, which can make it more economically competitive against petrochemical-based succinate. Galactose sugars constitute a significant fraction of the soluble carbohydrate in a meal from agricultural sources which is considered a low value or waste byproduct of oilseed processing. To improve the galactose utilization, the effect of galR and glk on sugars uptake was investigated by deactivation of each gene in three previously engineered host strains. As expected, glk plays an important role in glucose uptake, while, the effect of deactivation of galR is highly dependent on the strength of the downstream module (succinate production module). A new succinate producer FZ661T was constructed by enhancement of the succinate producing module and manipulation of the gal operon. The succinate productivity reached 4.57 g/L/hr when a mixed sugar feedstock was used as a carbon source in shake-flask fermentation, up to 812 mM succinate was accumulated in 80 hr in fed-batch fermentation. When SoyMolaGal hydrolysate was used as a carbon source, 628 mM (74 g/L) succinate was produced within 72 hr. In this study, we demonstrate that FZ661T can produce succinate quickly with relatively high yield, giving it the potential for industrial application.
Assuntos
Escherichia coli , Galactose/metabolismo , Ácido Succínico/metabolismo , Anaerobiose , Reatores Biológicos/microbiologia , Meios de Cultura/química , Meios de Cultura/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Glucose/metabolismo , Engenharia Metabólica , Hidrolisados de Proteína/metabolismo , Ácido Succínico/análiseRESUMO
Hydroxy fatty acids (HFAs) are valuable compounds that are widely used in medical, cosmetic and food fields. Production of ω-HFAs via bioconversion by engineered Escherichia coli has received a lot of attention because this process is environmentally friendly. In this study, a whole-cell bio-catalysis strategy was established to synthesize medium-chain ω-HFAs based on the AlkBGT hydroxylation system from Pseudomonas putida GPo1. The effects of blocking the ß-oxidation of fatty acids (FAs) and enhancing the transportation of FAs on ω-HFAs bio-production were also investigated. When fadE and fadD were deleted, the consumption of decanoic acid decreased, and the yield of ω-hydroxydecanoic acid was enhanced remarkably. Additionally, the co-expression of the FA transporter protein, FadL, played an important role in increasing the conversion rate of ω-hydroxydecanoic acid. As a result, the concentration and yield of ω-hydroxydecanoic acid in NH03(pBGT-fadL) increased to 309 mg/L and 0.86 mol/mol, respectively. This whole-cell bio-catalysis system was further applied to the biosynthesis of ω-hydroxyoctanoic acid and ω-hydroxydodecanoic acid using octanoic acid and dodecanoic acid as substrates, respectively. The concentrations of ω-hydroxyoctanoic acid and ω-hydroxydodecanoic acid reached 275.48 and 249.03 mg/L, with yields of 0.63 and 0.56 mol/mol, respectively. This study demonstrated that the overexpression of AlkBGT coupled with native FadL is an efficient strategy to synthesize medium-chain ω-HFAs from medium-chain FAs in fadE and fadD mutant E. coli strains.
RESUMO
Clostridium acetobutylicum is a natural producer of butanol, butyrate, acetone and ethanol. The pattern of metabolites reflects the partitioning of redox equivalents between hydrogen and carbon metabolites. Here the exogenous genes of ferredoxin-NAD(P)+ oxidoreductase (FdNR) and trans-enoyl-coenzyme reductase (TER) are introduced to three different Clostridium acetobutylicum strains to investigate the distribution of redox equivalents and butanol productivity. The FdNR improves NAD(P)H availability by capturing reducing power from ferredoxin. A butanol production of 9.01 g/L (36.9% higher than the control), and the highest ratios of butanol/acetate (7.02) and C4/C2 (3.17) derived metabolites were obtained in the C acetobutylicum buk- strain expressing FdNR. While the TER functions as an NAD(P)H oxidase, butanol production was decreased in the C. acetobutylicum strains containing TER. The results illustrate that metabolic flux can be significantly changed and directed into butanol or butyrate due to enhancement of NAD(P)H availability by controlling electron flow through the ferredoxin node.
Assuntos
Butanóis/metabolismo , Clostridium acetobutylicum/genética , NADP/química , NAD/química , 1-Butanol/metabolismo , Acetona/metabolismo , Butiratos/metabolismo , Etanol/metabolismo , Fermentação , Hidrogênio/metabolismo , OxirreduçãoRESUMO
It is of great economic interest to produce succinate from low-grade carbon sources, which can enhance the competitiveness of the biological route. In this study, succinate producer Escherichia coli CT550/pHL413KF1 was further engineered to efficiently use the mixed sugars from non-food based soybean hydrolysate to produce succinate under anaerobic conditions. Since many common E. coli strains fail to use galactose anaerobically even if they can use it aerobically, the glucose, and galactose related sugar transporters were deactivated individually and evaluated. The PTS system was found to be important for utilization of mixed sugars, and galactose uptake was activated by deactivating ptsG. In the ptsG- strain, glucose, and galactose were used simultaneously. Glucose was assimilated mainly through the mannose PTS system while galactose was transferred mainly through GalP in a ptsG- strain. A new succinate producing strain, FZ591C which can efficiently produce succinate from the mixed sugars present in soybean hydrolysate was constructed by integration of the high succinate yield producing module and the galactose utilization module into the chromosome of the CT550 ptsG- strain. The succinate yield reached 1.64 mol/mol hexose consumed (95% of maximum theoretical yield) when a mixed sugars feedstock was used as a carbon source. Based on the three monitored sugars, a nominal succinate yield of 1.95 mol/mol was observed as the strain can apparently also use some other minor sugars in the hydrolysate. In this study, we demonstrate that FZ591C can use soybean hydrolysate as an inexpensive carbon source for high yield succinate production under anaerobic conditions, giving it the potential for industrial application.
Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Glycine max/metabolismo , Engenharia Metabólica/métodos , Ácido Succínico/metabolismo , Anaerobiose , Biotransformação , Fermentação , Galactose/metabolismo , Glucose/metabolismo , Redes e Vias Metabólicas/genéticaRESUMO
Switchgrass is a promising feedstock to generate fermentable sugars required for the sustainable operation of biorefineries because of their abundant availability, easy cropping system, and high cellulosic content. The objective of this study was to investigate the potentiality of switchgrass as an alternative sugar supplier for free fatty acid (FFA) production using engineered Escherichia coli strains. Recombinant E. coli strains successfully produced FFAs using switchgrass hydrolysates. A total of about 3 g/L FFAs were attained from switchgrass hydrolysates by engineered E. coli strains. Furthermore, overall yield assessments of our bioconversion process showed that 88 and 46% of the theoretical maximal yields of glucose and xylose were attained from raw switchgrass during sugar generation. Additionally, 72% of the theoretical maximum yield of FFAs were achieved from switchgrass hydrolysates by recombinant E. coli during fermentation. These shake-flask results were successfully scaled up to a laboratory scale bioreactor with a 4 L working volume. This study demonstrated an efficient bioconversion process of switchgrass-based FFAs using an engineered microbial system for targeting fatty acid production that are secreted into the fermentation broth with associated lower downstream processing costs, which is pertinent to develop an integrated bioconversion process using lignocellulosic biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:91-98, 2018.
Assuntos
Carboidratos/química , Escherichia coli/química , Ácidos Graxos não Esterificados/biossíntese , Panicum/química , Biomassa , Escherichia coli/genética , Fermentação , Glucose/química , Engenharia Metabólica , Açúcares/química , Xilose/químicaRESUMO
Several metabolic engineered Escherichia coli strains were constructed and evaluated for four-carbon dicarboxylic acid production. Fumarase A, fumarase B and fumarase C single, double and triple mutants were constructed in a ldhA adhE mutant background overexpressing the pyruvate carboxylase from Lactococcus lactis. All the mutants produced succinate as the main four-carbon (C4) dicarboxylic acid product when glucose was used as carbon source with the exception of the fumAC and the triple fumB fumAC deletion strains, where malate was the main C4-product with a yield of 0.61-0.67 mol (mole glucose)-1. Additionally, a mdh mutant strain and a previously engineered high-succinate-producing strain (SBS550MG-Cms pHL413-Km) were investigated for aerobic malate production from succinate. These strains produced 40.38 mM (5.41 g/L) and 50.34 mM (6.75 g/L) malate with a molar yield of 0.53 and 0.55 mol (mole succinate)-1, respectively. Finally, by exploiting the high-succinate production capability, the strain SBS550MG-Cms243 pHL413-Km showed significant malate production in a two-stage process from glucose. This strain produced 133 mM (17.83 g/L) malate in 47 h, with a high yield of 1.3 mol (mole glucose)-1 and productivity of 0.38 g L-1 h-1.
Assuntos
Ácidos Dicarboxílicos/metabolismo , Escherichia coli/metabolismo , Álcool Desidrogenase/genética , Carbono/metabolismo , Escherichia coli/genética , Fumarato Hidratase/genética , Glucose/metabolismo , L-Lactato Desidrogenase/genética , Lactococcus lactis/enzimologia , Malatos/metabolismo , Engenharia Metabólica , Mutação , Ácido Succínico/metabolismoRESUMO
Microbial conversion of renewable carbon sources to free fatty acids has attracted significant attention in recent years. Accumulation of free fatty acids in Escherichia coli by overexpression of an acyl-ACP thioesterase which can break the fatty acid elongation has been well established. Various efforts have been made to increase fatty acid production in E. coli by enhancing the enzymes involved in the fatty acid synthesis cycle or host strain manipulations. The current study focused on the effect of NADPH availability on free fatty acids (FFAs) productivity. There are two reduction steps in the fatty acid elongation cycle which are catalyzed by beta keto-ACP reductase (FabG) and enoyl-ACP reductase (FabI), respectively. It is reported that FabI can use either NADH or NADPH as cofactor, while FabG only uses NADPH in E. coli. Fatty acid production dropped dramatically in the glucose-6-phosphate dehydrogenase (encoded by the zwf gene) deficient strain. Similarly, the pntB (which encodes one of the subunit of proton-translocating membrane bounded transhydrogenase PntAB) and udhA (which encodes the energy dependent cytoplasmic transhydrogenase UdhA) double mutant strain also showed an 88.8% decrease in free fatty acid production. Overexpression of PntAB and NadK restored the fatty acid production capability of these two mutant strains. These results indicated that the availability of NADPH played a very important role in fatty acid production.
Assuntos
Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/metabolismo , NADP/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Ácidos Graxos não Esterificados/análise , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimologia , Ricinus/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismoRESUMO
Hairy root cultures generated using Agrobacterium rhizogenes are an extensively investigated system for the overproduction of various secondary metabolite based pharmaceuticals and chemicals. This study demonstrated a transgenic Catharanthus roseus hairy root line carrying a feedback-insensitive anthranilate synthase (AS) maintained chemical and genetic stability for 11 years. The AS gene was originally inserted in the hairy root genome under the control of a glucocorticoid inducible promoter. After 11 years continuous maintenance of this hairy root line, genomic PCR of the ASA gene showed the presence of ASA gene in the genome. The mRNA level of AS was induced to 52-fold after feeding the inducer as compared to the uninduced control. The AS enzyme activity was 18.4 nmol/(min*mg) in the induced roots as compared to 2.1 nmol/(min*mg) in the control. In addition, the changes in terpenoid indole alkaloid concentrations after overexpressing AS were tracked over 11 years. The major alkaloid levels in induced and control roots at 11 years are comparable with the metabolite levels at 5 years. This study demonstrates the long term genetic and biochemical stability of hairy root lines, which has important implications for industrial scale applications. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:66-69, 2017.
Assuntos
Antranilato Sintase/biossíntese , Catharanthus/citologia , Técnicas de Cultura de Células , Raízes de Plantas/citologia , Agrobacterium/genética , Antranilato Sintase/genética , Catharanthus/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Células Vegetais/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente ModificadasRESUMO
Microaerobic growth is of importance in ecological niches, pathogenic infections and industrial production of chemicals. The use of low levels of oxygen enables the cell to gain energy and grow more robustly in the presence of a carbon source that can be oxidized and provide electrons to the respiratory chain in the membrane. A considerable amount of information is available on the genes and proteins involved in respiratory growth and the regulation of genes involved in aerobic and anaerobic metabolism. The dependence of regulation on sensing systems that respond to reduced quinones (e.g. ArcB) or oxygen levels that affect labile redox components of transcription regulators (Fnr) are key in understanding the regulation. Manipulation of the amount of respiration can be difficult to control in dense cultures or inadequately mixed reactors leading to inhomogeneous cultures that may have lower than optimal performance. Efforts to control respiration through genetic means have been reported and address mutations affecting components of the electron transport chain. In a recent report completion for intermediates of the ubiquinone biosynthetic pathway was used to dial the level of respiration vs lactate formation in an aerobically grown E. coli culture.
Assuntos
Transporte de Elétrons , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Oxigênio/metabolismo , Vias Biossintéticas , Escherichia coli/genética , Oxirredução , Ubiquinona/biossínteseRESUMO
Conversion of biomass feedstock to chemicals and fuels has attracted increasing attention recently. Soybean meal, containing significant quantities of carbohydrates, is an inexpensive renewable feedstock. Glucose, galactose, and fructose can be obtained by enzymatic hydrolysis of soluble carbohydrates of soybean meal. Free fatty acids (FFAs) are valuable molecules that can be used as precursors for the production of fuels and other value-added chemicals. In this study, free fatty acids were produced by mutant Escherichia coli strains with plasmid pXZ18Z (carrying acyl-ACP thioesterase (TE) and (3R)-hydroxyacyl-ACP dehydratase) using individual sugars, sugar mixtures, and enzymatic hydrolyzed soybean meal extract. For individual sugar fermentations, strain ML211 (MG1655 fadD(-) fabR(-) )/pXZ18Z showed the best performance, which produced 4.22, 3.79, 3.49 g/L free fatty acids on glucose, fructose, and galactose, respectively. While the strain ML211/pXZ18Z performed the best with individual sugars, however, for sugar mixture fermentation, the triple mutant strain XZK211 (MG1655 fadD(-) fabR(-) ptsG(-) )/pXZ18Z with an additional deletion of ptsG encoding the glucose-specific transporter, functioned the best due to relieved catabolite repression. This strain produced approximately 3.18 g/L of fatty acids with a yield of 0.22 g fatty acids/g total sugar. Maximum free fatty acids production of 2.78 g/L with a high yield of 0.21 g/g was achieved using soybean meal extract hydrolysate. The results suggested that soybean meal carbohydrates after enzymatic treatment could serve as an inexpensive feedstock for the efficient production of free fatty acids.
Assuntos
Metabolismo dos Carboidratos , Carboidratos/isolamento & purificação , Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Glycine max/química , Engenharia Metabólica/métodos , Biotransformação , Redes e Vias Metabólicas/genética , PlasmídeosRESUMO
To be competitive with current petrochemicals, microbial synthesis of free fatty acids can be made to rely on a variety of renewable resources rather than on food carbon sources, which increase its attraction for governments and companies. Industrial waste soybean meal is an inexpensive feedstock, which contains soluble sugars such as stachyose, raffinose, sucrose, glucose, galactose, and fructose. Free fatty acids were produced in this report by introducing an acyl-ACP carrier protein thioesterase and (3R)-hydroxyacyl-ACP dehydratase into E. coli. Plasmid pRU600 bearing genes involved in raffinose and sucrose metabolism was also transformed into engineered E. coli strains, which allowed more efficient utilization of these two kinds of specific oligosaccharide present in the soybean meal extract. Strain ML103 (pRU600, pXZ18Z) produced ~1.60 and 2.66 g/L of free fatty acids on sucrose and raffinose, respectively. A higher level of 2.92 g/L fatty acids was obtained on sugar mixture. The fatty acid production using hydrolysate obtained from acid or enzyme based hydrolysis was evaluated. Engineered strains just produced ~0.21 g/L of free fatty acids with soybean meal acid hydrolysate. However, a fatty acid production of 2.61 g/L with a high yield of 0.19 g/g total sugar was observed on an enzymatic hydrolysate. The results suggest that complex mixtures of oligosaccharides derived from soybean meal can serve as viable feedstock to produce free fatty acids. Enzymatic hydrolysis acts as a much more efficient treatment than acid hydrolysis to facilitate the transformation of industrial waste from soybean processing to high value added chemicals.
Assuntos
Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/biossíntese , Glycine max/química , Oligossacarídeos/química , Organismos Geneticamente Modificados , Meios de Cultura/química , Escherichia coli/genética , Fermentação , Frutose/química , Galactose/química , Glucose/química , Plasmídeos/genética , Hidrolisados de Proteína/química , Rafinose/química , Sacarose/química , Tioléster Hidrolases/metabolismoRESUMO
A novel strategy to finely control the electron transfer chain (ETC) activity of Escherichia coli was established. In this study, the fine-tuning of the ubiquinone biosynthesis pathway was applied to further controlling ETC function in coenzyme Q8 biosynthesis-deficient E. coli strains, HW108 and HW109, which contain mutations in ubiE and ubiG, respectively. A competing pathway on the intermediate substrates of the Q8 synthesis pathway, catalyzed by diphosphate:4-hydroxybenzoate geranyltransferase (PGT-1) of Lithospermum erythrorhizon, was introduced into these mutant strains. A nearly theoretical yield of lactate production can be achieved under fully aerobic conditions via an in vivo, genetically fine-tunable means to further control the activity of the ETC of the Q8 biosynthesis-deficient E. coli strains.
Assuntos
Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Engenharia Metabólica/métodos , Ubiquinona/biossíntese , Ubiquinona/deficiência , Aerobiose , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Transporte de Elétrons , Escherichia coli/genética , Fermentação , Lithospermum/enzimologia , Lithospermum/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
In this study, the Escherichia coli strain MG1655 with fadD mutant (named as ML103), and MG1655 with fadD and ptsG double mutant (named as ML190) carrying the plasmid with the acyl-ACP thioesterase (TE) from Ricinus communis (pXZ18) or the plasmid with the combination of the TE and the native (3R)-hydroxyacyl-ACP dehydrase (fabZ) (pXZ18Z), produced free fatty acids (FFAs) efficiently using mannose as the sole carbon source. Due to the carbon catabolite repression (CCR) regulation, ML103(pXZ18) utilized glucose and mannose sequentially in the mixed sugar culture, while ML190(pXZ18) and ML190(pXZ18Z), with ptsG mutation, used glucose and mannose simultaneously. The highest total FFA concentration from the mixed sugar culture reached 2.96g/L by ML190(pXZ18Z). Furthermore, the strain ML190(pXZ18Z) can produce 2.86g/L FFAs with a high yield of 0.23g/g using hydrolysate mainly contained glucose and mannose from a commercial plant.
Assuntos
Escherichia coli/metabolismo , Ácidos Graxos/química , Glucose/química , Manose/química , Biomassa , Meios de Cultura , Hidrólise , Engenharia Metabólica/métodos , Mutação , Ricinus/metabolismo , MadeiraRESUMO
A novel strategy to finely control a large metabolic flux by using a "metabolic transistor" approach was established. In this approach a small change in the level or availability of an essential component for the process is controlled by adding a competitive reaction that affects a precursor or an intermediate in its biosynthetic pathway. The change of the basal level of the essential component, considered as a base current in a transistor, has a large effect on the flux through the major pathway. In this way, the fine-tuning of a large flux can be accomplished. The "metabolic transistor" strategy was applied to control electron transfer chain function by manipulation of the quinone synthesis pathway in Escherichia coli. The achievement of a theoretical yield of lactate production under aerobic conditions via this strategy upon manipulation of the biosynthetic pathway of the key participant, ubiquinone-8 (Q8), in an E. coli strain provides an in vivo, genetically tunable means to control the activity of the electron transfer chain and manipulate the production of reduced products while limiting consumption of oxygen to a defined amount.
Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons , Proteínas de Escherichia coli , Escherichia coli , Consumo de Oxigênio/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Láctico/metabolismo , Ubiquinona/genética , Ubiquinona/metabolismoRESUMO
The review describes efforts toward metabolic engineering of production of organic acids. One aspect of the strategy involves the generation of an appropriate amount and type of reduced cofactor needed for the designed pathway. The ability to capture reducing power in the proper form, NADH or NADPH for the biosynthetic reactions leading to the organic acid, requires specific attention in designing the host and also depends on the feedstock used and cell energetic requirements for efficient metabolism during production. Recent work on the formation and commercial uses of a number of small mono- and diacids is discussed with redox differences, major biosynthetic precursors and engineering strategies outlined. Specific attention is given to those acids that are used in balancing cell redox or providing reduction equivalents for the cell, such as formate, which can be used in conjunction with metabolic engineering of other products to improve yields. Since a number of widely studied acids derived from oxaloacetate as an important precursor, several of these acids are covered with the general strategies and particular components summarized, including succinate, fumarate and malate. Since malate and fumarate are less reduced than succinate, the availability of reduction equivalents and level of aerobiosis are important parameters in optimizing production of these compounds in various hosts. Several other more oxidized acids are also discussed as in some cases, they may be desired products or their formation is minimized to afford higher yields of more reduced products. The placement and connections among acids in the typical central metabolic network are presented along with the use of a number of specific non-native enzymes to enhance routes to high production, where available alternative pathways and strategies are discussed. While many organic acids are derived from a few precursors within central metabolism, each organic acid has its own special requirements for high production and best compatibility with host physiology.
Assuntos
Carbono/metabolismo , Formiatos/metabolismo , Fumaratos/metabolismo , Engenharia Metabólica , Ácido Succínico/metabolismo , Malatos/metabolismo , Redes e Vias Metabólicas/genética , Oxirredução , Propionatos/metabolismoRESUMO
Crude glycerol, generated as waste by-product in biodiesel production process, has been considered as an important carbon source for converting to value-added bioproducts recently. Free fatty acids (FFAs) can be used as precursors for the production of biofuels or biochemicals. Microbial biosynthesis of FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase into Escherichia coli. In this study, the effect of metabolic manipulation of FFAs synthesis cycle, host genetic background and cofactor engineering on FFAs production using glycerol as feed stocks was investigated. The highest concentration of FFAs produced by the engineered stain reached 4.82g/L with the yield of 29.55% (g FFAs/g glycerol), about 83% of the maximum theoretical pathway value by the type II fatty acid synthesis pathway. In addition, crude glycerol from biodiesel plant was also used as feedstock in this study. The FFA production was 3.53g/L with a yield of 24.13%. The yield dropped slightly when crude glycerol was used as a carbon source instead of pure glycerol, while it still can reach about 68% of the maximum theoretical pathway yield.
Assuntos
Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Ácidos Graxos não Esterificados/biossíntese , Glicerol/metabolismo , Engenharia Metabólica/métodos , NADP Trans-Hidrogenases/metabolismo , Fosfotransferases/metabolismo , Simulação por Computador , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/genética , Melhoramento Genético/métodos , Modelos Biológicos , NADP Trans-Hidrogenases/genética , Fosfotransferases/genéticaRESUMO
Four engineered Escherichia coli strains, ML103(pXZ18), ML103(pXZ18Z), ML190(pXZ18) and ML190(pXZ18Z), were constructed to investigate free fatty acid production using hydrolysate as carbon source. These strains exhibited efficient fatty acid production when xylose was used as the sole carbon source. For mixed sugars, ML103 based strains utilized glucose and xylose sequentially under the carbon catabolite repression (CCR) regulation, while ML190 based strains, with ptsG mutation, used glucose and xylose simultaneously. The total free fatty acid concentration and yield of the strain ML190(pXZ18Z) based on the mixed sugar reached 3.64 g/L and 24.88%, respectively. Furthermore, when hydrolysate from a commercial plant was used as the carbon source, the strain ML190(pXZ18Z) can produce 3.79 g/L FFAs with a high yield of 21.42%.
Assuntos
Biomassa , Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/biossíntese , Engenharia Metabólica/métodos , Madeira/química , Carbono/farmacologia , Escherichia coli/efeitos dos fármacos , Glucose/farmacologia , Hidrólise , Xilose/farmacologiaRESUMO
Microbial biosynthesis of free fatty acids (FFAs) can be achieved by introducing an acyl-acyl carrier protein thioesterase gene into Escherichia coli. The engineered E. coli usually produced even chain FFAs. In this study, propionyl-CoA synthetase (prpE) from Salmonella enterica was overexpressed in two efficient even chain FFAs producers, ML103 (pXZM12) carrying the acyl-ACP thioesterase gene from Umbellularia californica and ML103 (pXZ18) carrying the acyl-ACP thioesterase gene from Ricinus communis combined with supplement of extracellular propionate. With these metabolically engineered E. coli, the odd straight chain FFAs, undecanoic acid (C11:0), tridecanoic acid (C13:0), and pentadecanoic acid (C15:0) were produced from glucose and propionate. The highest total odd straight chain FFAs produced by ML103 (pXZM12, pBAD-prpE) reached 276 mg/l with a ratio of 23.43 % of the total FFAs. In ML103 (pXZ18, pBAD-prpE), the highest total odd straight chain FFAs accumulated to 297 mg/l, and the ratio reached 17.68 % of the total FFAs. Due to the different substrate specificity of the acyl-ACP thioesterases, the major odd straight chain FFA components of ML103 (pXZM12, pBAD-prpE) were undecanoic acid and tridecanoic acid, while the ML103 (pXZ18, pBAD-prpE) preferred pentadecanoic acid.