Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 2(11): 7188-7196, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34085029

RESUMO

Alkanethiolate-capped palladium nanoparticles (PdNPs) have previously been synthesized by using a modified Brust-Schiffrin synthesis (using alkanethiosulfate instead of alkanethiol), in which the nanoparticle core size is established during alkanethiosulfate ligand passivation of the nanoparticle nucleation-growth initiated by borohydride reduction. Because of the dependence of core size on the amount of ligand present, surface ligand density decreases with increasing core size. Herein we present a method in which the core size is established independent of ligand addition, allowing the formation of PdNPs with similar core sizes yet different surface ligand densities. In this method, the core size is established during the temporary passivation of growing nanoparticles by borohydride and tetra-N-octylammonium bromide (TOAB), allowing nucleation to reach completion. Various molar equivalents of alkyl thiosulfate are then added, prompting the replacement of borohydride and TOAB and the formation of alkanethiolate-capped PdNPs. The resulting PdNPs were characterized by using 1H NMR, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The overall enhanced catalytic activity of hydrogenation/isomerization of alkenes and dienes was observed for PdNPs with a lower ligand density, proving the isolated effect of surface ligand density from other variations such as core size and shape. Surface ligand density is also shown to influence the hydrogenation/isomerization product selectivity of the catalytic reactions by regulating the formation of certain Pd-substrate intermediates and the kinetic diffusion of surface hydrogen/substrates.

2.
Nanomaterials (Basel) ; 8(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783714

RESUMO

Evaluation of metal nanoparticle catalysts functionalized with well-defined thiolate ligands can be potentially important because such systems can provide a spatial control in the reactivity and selectivity of catalysts. A synthetic method utilizing Bunte salts (sodium S-alkylthiosulfates) allows the formation of metal nanoparticles (Au, Ag, Pd, Pt, and Ir) capped with alkanethiolate ligands. The catalysis studies on Pd nanoparticles show a strong correlation between the surface ligand structure/composition and the catalytic activity and selectivity for the hydrogenation/isomerization of alkenes, dienes, trienes, and allylic alcohols. The high selectivity of Pd nanoparticles is driven by the controlled electronic properties of the Pd surface limiting the formation of Pd⁻alkene adducts (or intermediates) necessary for (additional) hydrogenation. The synthesis of water soluble Pd nanoparticles using ω-carboxylate-S-alkanethiosulfate salts is successfully achieved and these Pd nanoparticles are examined for the hydrogenation of various unsaturated compounds in both homogeneous and heterogeneous environments. Alkanethiolate-capped Pt nanoparticles are also successfully synthesized and further investigated for the hydrogenation of various alkynes to understand their geometric and electronic surface properties. The high catalytic activity of activated terminal alkynes, but the significantly low activity of internal alkynes and unactivated terminal alkynes, are observed for Pt nanoparticles.

3.
ACS Appl Mater Interfaces ; 9(11): 9823-9832, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28252941

RESUMO

Stable and isolable alkanethiolate-stabilized Pt nanoparticles (PtNP) were synthesized using the two-phase thiosulfate method with sodium S-alkylthiosulfate as ligand precursor. The mechanistic formation of octanethiolate-capped PtNP (Pt-SC8) from both sodium S-octylthiosulfate and 1-octanethiol ligands was investigated by using 1H NMR and UV-vis spectroscopies, which revealed the formation of different Pt complexes as the reaction intermediates. The synthesis using S-octylthiosulfate ligand precursor produced Pt-SC8 in higher yields than that using 1-octanethiol ligand. The obtained nanoparticles were characterized by 1H NMR, UV-vis spectroscopy, infrared spectroscopy (IR), thermogravimetric analysis, and transmission electron microscopy (TEM). The results obtained from 1H NMR, IR, and UV-vis spectroscopy were consistent with the formation of stable and pure alkanethiolate-capped PtNP. TEM images of PtNP confirmed their small average core size (∼1.5 nm) and high monodispersity. The partially poisoned PtNP with thiolate monolayer ligands were further investigated for the hydrogenation of various alkynes to understand the organic ligands-induced geometric and electronic surface properties of colloidal Pt nanoparticle catalysts. The high catalytic activity of activated terminal alkynes, but the significantly low activity of internal alkynes and unactivated terminal alkynes, were observed under the mild reaction conditions (room temperature and atmospheric pressure). These results indicated that the presence of alkanethiolate ligands could decrease the coordination activity of PtNP surface especially for the bulkier and unactivated substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA