Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 15(6): 1421-1442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36828279

RESUMO

BACKGROUND & AIMS: Fiber-rich foods promote health, but mechanisms by which they do so remain poorly defined. Screening fiber types, in mice, revealed psyllium had unique ability to ameliorate 2 chronic inflammatory states, namely, metabolic syndrome and colitis. We sought to determine the mechanism of action of the latter. METHODS: Mice were fed grain-based chow, which is naturally rich in fiber or compositionally defined diets enriched with semi-purified fibers. Mice were studied basally and in models of chemical-induced and T-cell transfer colitis. RESULTS: Relative to all diets tested, mice consuming psyllium-enriched compositionally defined diets were markedly protected against both dextran sulfate sodium- and T-cell transfer-induced colitis, as revealed by clinical-type, histopathologic, morphologic, and immunologic parameters. Such protection associated with stark basal changes in the gut microbiome but was independent of fermentation and, moreover, maintained in mice harboring a minimal microbiota (ie, Altered Schaedler Flora). Transcriptomic analysis revealed psyllium induced expression of genes mediating bile acids (BA) secretion, suggesting that psyllium's known ability to bind BA might contribute to its ability to prevent colitis. As expected, psyllium resulted in elevated level of fecal BA, reflecting their removal from enterohepatic circulation but, in stark contrast to the BA sequestrant cholestyramine, increased serum BA levels. Moreover, the use of BA mimetics that activate the farnesoid X receptor (FXR), as well as the use of FXR-knockout mice, suggested that activation of FXR plays a central role in psyllium's protection against colitis. CONCLUSIONS: Psyllium protects against colitis via altering BA metabolism resulting in activation of FXR, which suppresses pro-inflammatory signaling.


Assuntos
Colite , Psyllium , Camundongos , Animais , Psyllium/efeitos adversos , Ácidos e Sais Biliares , Promoção da Saúde , Colite/induzido quimicamente , Colite/prevenção & controle , Colite/metabolismo , Inflamação , Camundongos Knockout
2.
Gastroenterology ; 161(1): 211-224, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33741315

RESUMO

BACKGROUND AND AIMS: Bacterial swarming, a collective movement on a surface, has rarely been associated with human pathophysiology. This study aims to define a role for bacterial swarmers in amelioration of intestinal stress. METHODS: We developed a polymicrobial plate agar assay to detect swarming and screened mice and humans with intestinal stress and inflammation. From chemically induced colitis in mice, as well as humans with inflammatory bowel disease, we developed techniques to isolate the dominant swarmers. We developed swarm-deficient but growth and swim-competent mutant bacteria as isogenic controls. We performed bacterial reinoculation studies in mice with colitis, fecal 16S, and meta-transcriptomic analyses, as well as in vitro microbial interaction studies. RESULTS: We show that bacterial swarmers are highly predictive of intestinal stress in mice and humans. We isolated a novel Enterobacter swarming strain, SM3, from mouse feces. SM3 and other known commensal swarmers, in contrast to their mutant strains, abrogated intestinal inflammation in mice. Treatment of colitic mice with SM3, but not its mutants, enriched beneficial fecal anaerobes belonging to the family of Bacteroidales S24-7. We observed SM3 swarming associated pathways in the in vivo fecal meta-transcriptomes. In vitro growth of S24-7 was enriched in presence of SM3 or its mutants; however, because SM3, but not mutants, induced S24-7 in vivo, we concluded that swarming plays an essential role in disseminating SM3 in vivo. CONCLUSIONS: Overall, our work identified a new but counterintuitive paradigm in which intestinal stress allows for the emergence of swarming bacteria; however, these bacteria act to heal intestinal inflammation.


Assuntos
Colite/microbiologia , Enterobacter/fisiologia , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Cicatrização , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Técnicas Bacteriológicas , Colite/patologia , Colite/prevenção & controle , Modelos Animais de Doenças , Disbiose , Enterobacter/classificação , Fezes/microbiologia , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Pessoa de Meia-Idade , Movimento , Probióticos , Reepitelização , Adulto Jovem
3.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G955-G965, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32200644

RESUMO

Functional fermentable fibers are considered essential for a healthy diet. Recently, we demonstrated that gut microbiota dysbiotic mice fed an inulin-containing diet (ICD) developed hepatocellular carcinoma (HCC) within 6 mo. In particular, a subset of Toll-like receptor 5-deficient (T5KO) mice prone to HCC exhibited rapid onset of hyperbilirubinemia (HB) and cholemia; these symptoms provide rationale that ICD induces cholestasis. Our objective in the present study was to determine whether inulin-fed T5KO-HB mice exhibit other known consequences of cholestasis, including essential fatty acid and fat-soluble vitamin deficiencies. Here, we measured hepatic fatty acids and serum vitamin A and D levels from wild-type (WT), T5KO low bilirubin (LB) and T5KO-HB mice fed ICD for 4 wk. Additionally, hepatic RNAseq and proteomics were performed to ascertain other metabolic alterations. Compared with WT and T5KO-LB, T5KO-HB mice exhibited steatorrhea, i.e., ~50% increase in fecal lipids. This could contribute to the significant reduction of linoleate in hepatic neutral lipids in T5KO-HB mice. Additionally, serum vitamins A and D were ~50% reduced in T5KO-HB mice, which was associated with metabolic compromises. Overall, our study highlights that fermentable fiber-induced cholestasis is further characterized by depletion of macro-and micronutrients.NEW & NOTEWORTHY Feeding a dietary, fermentable fiber diet to a subset of Toll-like receptor 5 deficient (T5KO) mice induces early onset hyperbilirubinemia and cholemia that later manifests to hepatocellular carcinoma (HCC). Our study highlights that fermentable fiber-induced cholestasis is characterized with modest macro- and micronutrient deficiencies that may further contribute to hepatic biliary disease. Compared with chemical induction, immunization, surgery, or genetic manipulation, these findings provide a novel approach to study the cholestatic subtype of HCC.


Assuntos
Fibras na Dieta , Fígado Gorduroso/metabolismo , Absorção Intestinal , Inulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Síndromes de Malabsorção/metabolismo , Receptor 5 Toll-Like/deficiência , Deficiência de Vitamina A/metabolismo , Deficiência de Vitamina D/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Colestase/genética , Colestase/metabolismo , Colestase/patologia , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fermentação , Fígado/patologia , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/patologia , Masculino , Camundongos Knockout , Receptor 5 Toll-Like/genética , Deficiência de Vitamina A/genética , Deficiência de Vitamina D/genética
4.
Inflamm Bowel Dis ; 22(4): 841-52, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26891260

RESUMO

BACKGROUND: Apolipoprotein E (ApoE) mediates potent antiinflammatory and immunomodulatory properties in addition to its roles in regulating cholesterol transport and metabolism. However, its role in the intestine, specifically during inflammation, is largely unknown. METHODS: Mice (C57BL/6 or ApoE-deficient [ApoE-KO] mice) were administered either single or 4 injections (weekly) of anti-interleukin (IL)-10 receptor monoclonal antibody (1.0 mg/mouse; intraperitoneally) and euthanized 1 week after the last injection. 16S rRNA sequencing was performed in fecal samples to analyze the gut bacterial load and its composition. Microbiota was ablated by administration of broad-spectrum antibiotics in drinking water. IL-10KO mice were cohoused with ApoE-KO mice or their wild-type littermates to monitor the colitogenic potential of gut microbiota harbored in ApoE-KO mice. RESULTS: ApoE-KO mice developed severe colitis upon neutralization of IL-10 signaling as assessed by every parameter analyzed. 16S rRNA sequencing revealed that the ApoE-KO mice display elevated and altered gut microbiota that were accompanied with impaired production of intestinal antimicrobial peptides. Interestingly, microbiota ablation ameliorates colitis development in ApoE-KO mice. Exacerbated and accelerated colitis was observed in IL-10KO mice when cohoused with ApoE-KO mice. CONCLUSIONS: Our study highlights a novel interplay between ApoE and IL-10 in maintaining gut homeostasis and that such crosstalk may play a critical role in the pathogenesis of inflammatory bowel disease. Gut sterilization and the cohousing experiment suggest that microbiota play a pivotal role in the development of inflammatory bowel disease in mice lacking ApoE.


Assuntos
Apolipoproteínas E/fisiologia , Colite/etiologia , Inflamação/etiologia , Interleucina-10/fisiologia , Microbiota , Receptor 5 Toll-Like/fisiologia , Animais , Western Blotting , Doença Crônica , Colite/metabolismo , Colite/patologia , Feminino , Técnicas Imunoenzimáticas , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
5.
Cell Metab ; 22(6): 983-96, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26525535

RESUMO

The gut microbiota plays a key role in host metabolism. Toll-like receptor 5 (TLR5), a flagellin receptor, is required for gut microbiota homeostasis. Accordingly, TLR5-deficient (T5KO) mice are prone to develop microbiota-dependent metabolic syndrome. Here we observed that T5KO mice display elevated neutral lipids with a compositional increase of oleate [C18:1 (n9)] relative to wild-type littermates. Increased oleate contribution to hepatic lipids and liver SCD1 expression were both microbiota dependent. Analysis of short-chain fatty acids (SCFAs) and (13)C-acetate label incorporation revealed elevated SCFA in ceca and hepatic portal blood and increased liver de novo lipogenesis in T5KO mice. Dietary SCFAs further aggravated metabolic syndrome in T5KO mice. Deletion of hepatic SCD1 not only prevented hepatic neutral lipid oleate enrichment but also ameliorated metabolic syndrome in T5KO mice. Collectively, these results underscore the key role of the gut microbiota-liver axis in the pathogenesis of metabolic diseases.


Assuntos
Fígado/metabolismo , Síndrome Metabólica/patologia , Estearoil-CoA Dessaturase/metabolismo , Receptor 5 Toll-Like/genética , Animais , Peso Corporal , Restrição Calórica , Dieta Hiperlipídica , Ácidos Graxos Voláteis/sangue , Fezes/química , Feminino , Resistência à Insulina , Intestinos/microbiologia , Lipogênese , Espectroscopia de Ressonância Magnética , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Knockout , Microbiota , Ácido Oleico/metabolismo , Estearoil-CoA Dessaturase/deficiência , Estearoil-CoA Dessaturase/genética , Receptor 5 Toll-Like/deficiência , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA