Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 1231, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371461

RESUMO

Cell-cell communication and physical interactions play a vital role in cancer initiation, homeostasis, progression, and immune response. Here, we report a system that combines live capture of different cell types, co-incubation, time-lapse imaging, and gene expression profiling of doublets using a microfluidic integrated fluidic circuit that enables measurement of physical distances between cells and the associated transcriptional profiles due to cell-cell interactions. We track the temporal variations in natural killer-triple-negative breast cancer cell distances and compare them with terminal cellular transcriptome profiles. The results show the time-bound activities of regulatory modules and allude to the existence of transcriptional memory. Our experimental and bioinformatic approaches serve as a proof of concept for interrogating live-cell interactions at doublet resolution. Together, our findings highlight the use of our approach across different cancers and cell types.


Assuntos
Transcriptoma , Neoplasias de Mama Triplo Negativas , Humanos , Microfluídica , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica
2.
Genome Res ; 31(4): 689-697, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674351

RESUMO

Systematic delineation of complex biological systems is an ever-challenging and resource-intensive process. Single-cell transcriptomics allows us to study cell-to-cell variability in complex tissues at an unprecedented resolution. Accurate modeling of gene expression plays a critical role in the statistical determination of tissue-specific gene expression patterns. In the past few years, considerable efforts have been made to identify appropriate parametric models for single-cell expression data. The zero-inflated version of Poisson/negative binomial and log-normal distributions have emerged as the most popular alternatives owing to their ability to accommodate high dropout rates, as commonly observed in single-cell data. Although the majority of the parametric approaches directly model expression estimates, we explore the potential of modeling expression ranks, as robust surrogates for transcript abundance. Here we examined the performance of the discrete generalized beta distribution (DGBD) on real data and devised a Wald-type test for comparing gene expression across two phenotypically divergent groups of single cells. We performed a comprehensive assessment of the proposed method to understand its advantages compared with some of the existing best-practice approaches. We concluded that besides striking a reasonable balance between Type I and Type II errors, ROSeq, the proposed differential expression test, is exceptionally robust to expression noise and scales rapidly with increasing sample size. For wider dissemination and adoption of the method, we created an R package called ROSeq and made it available on the Bioconductor platform.


Assuntos
Perfilação da Expressão Gênica , RNA-Seq , Análise de Célula Única , Transcriptoma
3.
Nat Biotechnol ; 38(6): 747-755, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32518403

RESUMO

Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Animais , Benchmarking , Linhagem Celular , Bases de Dados Genéticas , Genômica/métodos , Genômica/normas , Humanos , Camundongos , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Análise de Célula Única/métodos , Análise de Célula Única/normas
4.
Methods Mol Biol ; 1979: 185-195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31028639

RESUMO

Single-cell functional analysis provides a natural next step in the now widely adopted single-cell mRNA sequencing studies. Functional studies can be designed to study cellular context by using single-cell culture, perturbation, manipulation, or treatment. Here we present a method for a functional study of 48 single cells by single-cell isolation, dosing, and mRNA sequencing with an integrated fluidic circuit (IFC) on the Fluidigm® Polaris™ system. The major procedures required to execute this protocol are (1) cell preparation and staining; (2) priming, single-cell selection, cell dosing, cell staining, and cDNA generation on the Polaris IFC; and (3) preparation and sequencing of single-cell mRNA-seq libraries. The cell preparation and staining steps employ the use of a universal tracking dye to trace all cells that enter the IFC, while additional fluorescence dyes chosen by the user can be used to differentiate cell types in the overall mix. The steps on the Polaris IFC follow standard protocols, which are also described in the Fluidigm user documentation. The library preparation step adds Illumina® Nextera® XT indexes to the cDNA generated on the Polaris IFC. The resulting sequencing libraries can be sequenced on any Illumina sequencing platform.


Assuntos
RNA Mensageiro/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Separação Celular/métodos , DNA Complementar/genética , Biblioteca Gênica , Humanos , Dispositivos Lab-On-A-Chip , Análise de Sequência de RNA/instrumentação , Análise de Célula Única/instrumentação , Coloração e Rotulagem/métodos
6.
Cell Rep ; 25(8): 2083-2093.e4, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463007

RESUMO

Megakaryocytic-erythroid progenitors (MEPs) give rise to the cells that produce red blood cells and platelets. Although the mechanisms underlying megakaryocytic (MK) and erythroid (E) maturation have been described, those controlling their specification from MEPs are unknown. Single-cell RNA sequencing of primary human MEPs, common myeloid progenitors (CMPs), megakaryocyte progenitors, and E progenitors revealed a distinct transitional MEP signature. Inferred regulatory transcription factors (TFs) were associated with differential expression of cell cycle regulators. Genetic manipulation of selected TFs validated their role in lineage specification and demonstrated coincident modulation of the cell cycle. Genetic and pharmacologic modulation demonstrated that cell cycle activation is sufficient to promote E versus MK specification. These findings, obtained from healthy human cells, lay a foundation to study the mechanisms underlying benign and malignant disease states of the megakaryocytic and E lineages.


Assuntos
Ciclo Celular , Linhagem da Célula , Células Progenitoras de Megacariócitos e Eritrócitos/citologia , Células Progenitoras de Megacariócitos e Eritrócitos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo
7.
Leukemia ; 32(7): 1670, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29891936

RESUMO

At the time of publication the funding information was omitted from the article - this has now been corrected in both the HTML and the PDF.

8.
Leukemia ; 32(7): 1575-1586, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29467489

RESUMO

The presence, within the human bone marrow, of cells with both endothelial and hemogenic potential has been controversial. Herein, we identify, within the human fetal bone marrow, prior to establishment of hematopoiesis, a unique APLNR+, Stro-1+ cell population, co-expressing markers of early mesodermal precursors and/or hemogenic endothelium. In adult marrow, cells expressing similar markers are also found, but at very low frequency. These adult-derived cells can be extensively culture expanded in vitro without loss of potential, they preserve a biased hemogenic transcriptional profile, and, upon in vitro induction with OCT4, assume a hematopoietic phenotype. In vivo, these cells, upon transplantation into a fetal microenvironment, contribute to the vasculature, and generate hematopoietic cells that provide multilineage repopulation upon serial transplantation. The identification of this human somatic cell population provides novel insights into human ontogenetic hematovascular potential, which could lead to a better understanding of, and new target therapies for, malignant and nonmalignant hematologic disorders.

9.
Sci Rep ; 7(1): 2776, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28584233

RESUMO

We have investigated the correlation between proteins and mRNAs in single cells employing an integrated workflow for dual-analyte co-detection. This is achieved by combining the oligo extension reaction (OER), which converts protein levels to DNA levels, with reverse transcription for mRNA detection. Unsupervised gene expression profiling analysis, including principal component analysis and hierarchical clustering, revealed different aspects of the protein-mRNA relationship. Violin plot analysis showed that some genes exhibited similar distribution patterns for proteins and mRNAs. We also demonstrate that cells can be separated into subpopulations based on their protein-mRNA expression profiles, and that different subpopulations have distinct correlation coefficient values. Our results demonstrated that integrated investigations of mRNA and protein levels in single cells allows comprehensive analysis not attainable at bulk levels.


Assuntos
Proteínas/metabolismo , RNA Mensageiro/metabolismo , Análise de Célula Única/métodos , Biomarcadores , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Humanos , Proteômica/métodos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
11.
Artigo em Inglês | MEDLINE | ID: mdl-27709111

RESUMO

The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based integrated fluidic circuit that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to various stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.

12.
Blood ; 128(7): 923-33, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27268089

RESUMO

Bipotent megakaryocyte/erythroid progenitors (MEPs) give rise to progeny limited to the megakaryocyte (Mk) and erythroid (E) lineages. We developed a novel dual-detection functional in vitro colony-forming unit (CFU) assay for single cells that differentiates down both the Mk and E lineages (CFU-Mk/E), which allowed development and validation of a novel purification strategy for the identification and quantitation of primary functional human MEPs from granulocyte colony-stimulating factor-mobilized peripheral blood and bone marrow. Applying this assay to fluorescence-activated cell sorter-sorted cell populations, we found that the Lin(-)CD34(+)CD38(mid)CD45RA(-)FLT3(-)MPL(+)CD36(-)CD41(-) population is much more highly enriched for bipotent MEPs than any previously reported subpopulations. We also developed purification strategies for primary human lineage-committed Mk and E progenitors identified as CFU-Mk and burst forming unit-E. Comparative expression analyses in MEP, MkP, and ErP populations revealed differential expression of MYB We tested whether alterations in MYB concentration affect the Mk-E fate decision at the single cell level in MEPs and found that short hairpin RNA-mediated MYB knockdown promoted commitment of MEPs to the Mk lineage, further defining its role in MEP lineage fate. There are numerous applications for these novel enrichment strategies, including facilitating mechanistic studies of MEP lineage commitment, improving approaches for in vitro expansion of Mk and E cells, and developing improved therapies for benign and malignant hematologic disease.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Antígenos CD34/metabolismo , Células Progenitoras de Megacariócitos e Eritrócitos/citologia , Adulto , Linhagem da Célula , Separação Celular , Ensaio de Unidades Formadoras de Colônias , Células Eritroides/citologia , Células Eritroides/metabolismo , Humanos , Células Progenitoras de Megacariócitos e Eritrócitos/metabolismo , Megacariócitos/citologia , Fenótipo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Receptores de Trombopoetina/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
13.
Blood ; 126(4): 520-30, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25964668

RESUMO

The actin cytoskeleton is important for platelet biogenesis. Tropomodulin-3 (Tmod3), the only Tmod isoform detected in platelets and megakaryocytes (MKs), caps actin filament (F-actin) pointed ends and binds tropomyosins (TMs), regulating actin polymerization and stability. To determine the function of Tmod3 in platelet biogenesis, we studied Tmod3(-/-) embryos, which are embryonic lethal by E18.5. Tmod3(-/-) embryos often show hemorrhaging at E14.5 with fewer and larger platelets, indicating impaired platelet biogenesis. MK numbers are moderately increased in Tmod3(-/-) fetal livers, with only a slight increase in the 8N population, suggesting that MK differentiation is not significantly affected. However, Tmod3(-/-) MKs fail to develop a normal demarcation membrane system (DMS), and cytoplasmic organelle distribution is abnormal. Moreover, cultured Tmod3(-/-) MKs exhibit impaired proplatelet formation with a wide range of proplatelet bud sizes, including abnormally large proplatelet buds containing incorrect numbers of von Willebrand factor-positive granules. Tmod3(-/-) MKs exhibit F-actin disturbances, and Tmod3(-/-) MKs spreading on collagen fail to polymerize F-actin into actomyosin contractile bundles. Tmod3 associates with TM4 and the F-actin cytoskeleton in wild-type MKs, and confocal microscopy reveals that Tmod3, TM4, and F-actin partially colocalize near the membrane of proplatelet buds. In contrast, the abnormally large proplatelets from Tmod3(-/-) MKs show increased F-actin and redistribution of F-actin and TM4 from the cortex to the cytoplasm, but normal microtubule coil organization. We conclude that F-actin capping by Tmod3 regulates F-actin organization in mouse fetal liver-derived MKs, thereby controlling MK cytoplasmic morphogenesis, including DMS formation and organelle distribution, as well as proplatelet formation and sizing.


Assuntos
Citoesqueleto de Actina/patologia , Plaquetas/patologia , Membrana Celular/patologia , Embrião de Mamíferos/patologia , Hemorragia/etiologia , Megacariócitos/patologia , Tropomodulina/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Apoptose , Plaquetas/metabolismo , Western Blotting , Membrana Celular/metabolismo , Proliferação de Células , Células Cultivadas , Citoplasma/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Imunofluorescência , Hematopoese/fisiologia , Hemorragia/metabolismo , Hemorragia/patologia , Imunoprecipitação , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Ploidias , Polimerização
14.
J Cell Physiol ; 228(5): 1010-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23042590

RESUMO

Besides the liver, it has been difficult to identify which organ(s) and/or cellular component(s) contribute significantly to the production of human FVIII:c (FVIII). Thus far, only endothelial cells have been shown to constitute a robust extrahepatic source of FVIII, possibly explaining both the diverse presence of FVIII mRNA in the body, and the observed increase in FVIII levels during liver failure. Here, we investigate whether human mesenchymal stem cells (MSC), ubiquitously present in different organs, could also contribute to FVIII production. MSC isolated from human lung, liver, brain, and bone marrow expressed FVIII message as determined by quantitative-RT-PCR. Using an antibody specific for FVIII, confocal microscopy, and umbilical cord-derived endothelial cells (HUVEC) as a negative control, we demonstrated that, in MSC, FVIII protein was not stored in granules; rather, it localized to the perinuclear region. Furthermore, functional FVIII was detected in MSC supernatants and cell lysates by aPTT and chromogenic assays. These results demonstrate that MSC can contribute at low levels to the functional FVIII pool, and advance the understanding of the physiology of FVIII production and secretion.


Assuntos
Fator VIII/biossíntese , Fator VIII/metabolismo , Células-Tronco Mesenquimais , Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal , RNA Mensageiro/metabolismo , Vesículas Secretórias/metabolismo , Distribuição Tecidual
15.
Exp Hematol ; 39(12): 1124-1135.e4, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21906573

RESUMO

We recently re-established a line of sheep that accurately mimics the clinical symptoms and genetics of severe hemophilia A (HA). Here, we tested a novel, nonablative transplantation therapy in two pediatric HA animals. Paternal mesenchymal stem cells (MSC) were transduced with a porcine FVIII-encoding lentivector and transplanted via the intraperitoneal route without preconditioning. At the time of transplantation, these animals had received multiple human FVIII treatments for various spontaneous bleeds and had developed debilitating hemarthroses, which produced severe defects in posture and gait. Transplantation of transduced MSC resolved all existent hemarthroses, and spontaneous bleeds ceased. Damaged joints recovered fully; the animals regained normal posture and gait and resumed normal activity. Despite achieving factor-independence, a sharp rise in pre-existent Bethesda titers occurred following transplantation, decreasing the effectiveness and duration of therapy. Postmortem examination revealed widespread engraftment, with MSC present within the lung, liver, intestine, and thymus, but particularly within joints affected at the time of transplantation, suggesting MSC homed to sites of ongoing injury/inflammation to release FVIII, explaining the dramatic improvement in hemarthrotic joints. In summary, this novel, nonablative MSC transplantation was straightforward, safe, and converted life-threatening, debilitating HA to a moderate phenotype in a large animal model.


Assuntos
Modelos Animais de Doenças , Fator VIII/genética , Hemofilia A/cirurgia , Transplante de Células-Tronco Mesenquimais , Ovinos/genética , Animais , Linhagem da Célula , Movimento Celular , Fator VIII/imunologia , Feminino , Vetores Genéticos/genética , Sobrevivência de Enxerto , Hemartrose/etiologia , Hemartrose/patologia , Hemofilia A/complicações , Hemofilia A/tratamento farmacológico , Hemorragia/etiologia , Humanos , Injeções Intraperitoneais , Isoanticorpos/biossíntese , Isoanticorpos/imunologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/virologia , Fenótipo , Proteínas Recombinantes/uso terapêutico , Indução de Remissão , Ovinos/sangue , Sus scrofa/genética , Distribuição Tecidual
16.
Exp Hematol ; 36(12): 1739-49, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19007686

RESUMO

OBJECTIVE: We and many others have long used sheep as a predictive model system in which to explore stem cell transplantation. Unfortunately, while numerous markers are available to identify and isolate human hematopoietic stem cells (HSC), no reagents exist that allow HSC/progenitors from sheep to be identified or purified, greatly impeding the application of this well-established large animal model to the study of autologous or allogeneic HSC transplantation. The current studies were undertaken to create a monoclonal antibody to sheep CD34 that would enable isolation and study of sheep HSC/progenitors. MATERIALS AND METHODS: A partial cDNA to the extracellular domain of the sheep CD34 antigen was polymerase chain reaction cloned, characterized, and used to genetically immunize mice and create hybridomas. RESULTS: The resultant monoclonal antibody to sheep CD34 allows flow cytometric detection of sheep HSC/progenitors present within bone marrow, cord blood, and mobilized peripheral blood. Moreover, this antibody can be used to enrich for HSC/progenitors with enhanced in vitro colony-forming potential, and also identifies endothelial cells in situ within paraffin-embedded tissue sections, similarly to antibodies to human CD34. CONCLUSIONS: The availability of this monoclonal antibody recognizing the stem cell antigen CD34 in sheep will greatly facilitate the study of autologous and allogeneic HSC transplantation using this clinically relevant large animal model.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD34/imunologia , Células-Tronco Hematopoéticas/imunologia , Ovinos/imunologia , Animais , Especificidade de Anticorpos/imunologia , Citometria de Fluxo , Humanos , Camundongos , Modelos Biológicos , Transplante de Células-Tronco , Transplante Autólogo , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA