Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell Death Discov ; 8(1): 396, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153318

RESUMO

Parkinson's disease (PD) remains a significant unmet clinical need. Gut dysbiosis stands as a PD pathologic source and therapeutic target. Here, we assessed the role of the gut-brain axis in PD pathology and treatment. Adult transgenic (Tg) α-synuclein-overexpressing mice served as subjects and were randomly assigned to either transplantation of vehicle or human umbilical cord blood-derived stem cells and plasma. Behavioral and immunohistochemical assays evaluated the functional outcomes following transplantation. Tg mice displayed typical motor and gut motility deficits, elevated α-synuclein levels, and dopaminergic depletion, accompanied by gut dysbiosis characterized by upregulation of microbiota and cytokines associated with inflammation in the gut and the brain. In contrast, transplanted Tg mice displayed amelioration of motor deficits, improved sparing of nigral dopaminergic neurons, and downregulation of α-synuclein and inflammatory-relevant microbiota and cytokines in both gut and brain. Parallel in vitro studies revealed that cultured dopaminergic SH-SY5Y cells exposed to homogenates of Tg mouse-derived dysbiotic gut exhibited significantly reduced cell viability and elevated inflammatory signals compared to wild-type mouse-derived gut homogenates. Moreover, treatment with human umbilical cord blood-derived stem cells and plasma improved cell viability and decreased inflammation in dysbiotic gut-exposed SH-SY5Y cells. Intravenous transplantation of human umbilical cord blood-derived stem/progenitor cells and plasma reduced inflammatory microbiota and cytokine, and dampened α-synuclein overload in the gut and the brain of adult α-synuclein-overexpressing Tg mice. Our findings advance the gut-brain axis as a key pathological origin, as well as a robust therapeutic target for PD.

4.
Cell Transplant ; 25(8): 1473-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26996530

RESUMO

Despite the high prevalence and devastating outcome, there remain a few options for treatment of ischemic stroke. Currently available treatments are limited by a short time window for treatment and marginal efficacy when used. We have tested a human umbilical cord blood-derived stem cell line that has been shown to result in a significant reduction in stroke infarct volume as well as improved functional recovery following stroke in the rat. In the present study we address the mechanism of action and compared the therapeutic efficacy of high- versus low-passage nonhematopoietic umbilical cord blood stem cells (nh-UCBSCs). Using the middle cerebral arterial occlusion (MCAo) model of stroke in Sprague-Dawley rats, we administered nh-UCBSC by intravenous (IV) injection 2 days following stroke induction. These human cells were injected into rats without any immune suppression, and no adverse reactions were detected. Both behavioral and histological analyses have shown that the administration of these cells reduces the infarct volume by 50% as well as improves the functional outcome of these rats following stroke for both high- and low-passaged nh-UCBSCs. Flow cytometry analysis of immune cells present in the brains of normal rats, rats with ischemic brain injury, and ischemic animals with nh-UCBSC treatment confirmed infiltration of macrophages and T cells consequent to ischemia and reduction to normal levels with nh-UCBSC treatment. Flow cytometry also revealed a restoration of normal levels of microglia in the brain following treatment. These data suggest that nh-UCBSCs may act by inhibiting immune cell migration into the brain from the periphery and possibly by inhibition of immune cell activation within the brain. nh-UCBSCs exhibit great potential for treatment of stroke, including the fact that they are associated with an increased therapeutic time window, no known ill-effects, and that they can be expanded to high numbers for, and stored for, treatment.


Assuntos
Isquemia Encefálica/terapia , Sangue Fetal/citologia , Células-Tronco/citologia , Acidente Vascular Cerebral/terapia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Infarto da Artéria Cerebral Média/terapia , Macrófagos/citologia , Microglia/citologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
5.
Cell Transplant ; 25(1): 195-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26414627

RESUMO

Human umbilical cord blood cells (HUCBCs), a prolific source of non-embryonic or adult stem cells, have emerged as effective and relatively safe immunomodulators and neuroprotectors, reducing behavioral impairment in animal models of Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and stroke. In this report, we followed the bioavailability of HUCBCs in AD-like transgenic PSAPP mice and nontransgenic Sprague-Dawley rats. HUCBCs were injected into tail veins of mice or rats at a single dose of 1 × 10(6) or 2.2 × 10(6) cells, respectively, prior to harvesting of tissues at 24 h, 7 days, and 30 days after injection. For determination of HUCBC distribution, tissues from both species were subjected to total DNA isolation and polymerase chain reaction (PCR) amplification of the gene for human glycerol-3-phosphate dehydrogenase. Our results show a relatively similar biodistribution and retention of HUCBCs in both mouse and rat organs. HUCBCs were broadly detected both in the brain and several peripheral organs, including the liver, kidney, and bone marrow, of both species, starting within 7 days and continuing up to 30 days posttransplantation. No HUCBCs were recovered in the peripheral circulation, even at 24 h posttransplantation. Therefore, HUCBCs reach several tissues including the brain following a single intravenous treatment, suggesting that this route can be a viable method of administration of these cells for the treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Cordão Umbilical/citologia , Animais , Modelos Animais de Doenças , Glicerolfosfato Desidrogenase/metabolismo , Humanos , Camundongos Transgênicos , Ratos Sprague-Dawley , Distribuição Tecidual
6.
J Neuroinflammation ; 12: 174, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26376629

RESUMO

BACKGROUND: Aging is associated with a decline in stem cell proliferation that is thought to be a result of dysregulated signaling in the neurogenic niche. This results in a diminished and less efficient pool of progenitors. The Wnt pathway plays a key role in the proliferation and differentiation of progenitor cells. Recent publications suggest that the age-related decline in the function of Wnt is a contributor to age-dependent decline in neural progenitors. Similarly, the aged neurogenic niche is characterized by higher levels of inflammatory cytokines. This increased inflammation contributes to the declining function of neural progenitor cells. NT-020, a proprietary blend of polyphenols, has been shown to increase proliferation of neural progenitors and improve cognitive function in aged rats. PURPOSE AND METHODS: In this study, we examined the neurogenic niche in the subgranular zone of the dentate gyrus (SGZ) and the subventricular zone (SVZ) of young and aged rats to determine if dietary supplementation with NT-020 could regulate inflammation and oxidative stress response pathways in neurons, astrocytes, and microglia. Further, we examined NT-020's ability to modulate Wnt signaling in the aged neurogenic niche. To accomplish this, we utilized gene PCR arrays and immunohistochemistry. RESULTS: We observed an increase in nuclear localization of immunopositive labeling of ß-catenin, HO-1, and Nrf2 in all subsets of cell types in both young and aged rats in the SGZ and SVZ following NT-020 treatment. NeuN-positive cells showed a basal increase in nuclear ß-catenin in the aged rats, which was not observed in doublecortin (DCX)-labeled cells, microglia, or astrocytes. Reverse transcription polymerase chain reaction (RT-PCR) analysis of isolated hippocampal tissue revealed that a significant percent of genes involved with inflammation are affected by treatment with NT-020. In addition, several genes that regulate Wnt activity were affected by supplementation. CONCLUSIONS: The results suggest that NT-020 activates oxidative stress response pathways and supports pro-neurogenic gene expression in the hippocampus. This may represent the mechanism by which the NT-020 formula enhances performance in learning and memory tasks in aged mice.


Assuntos
Envelhecimento , Carnosina/uso terapêutico , Colecalciferol/uso terapêutico , Inflamação/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/uso terapêutico , Via de Sinalização Wnt/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Carnosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Colecalciferol/farmacologia , Biologia Computacional , Citocinas/genética , Citocinas/metabolismo , Giro Denteado/citologia , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neuropeptídeos/metabolismo , Extratos Vegetais/farmacologia , Ratos , Ratos Endogâmicos F344 , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
7.
Age (Dordr) ; 37(5): 103, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26410618

RESUMO

Aging is associated with a decline in function in many of the stem cell niches of the body. An emerging body of literature suggests that one of the reasons for this decline in function is due to cell non-autonomous influences on the niche from the body. For example, studies using the technique of parabiosis have demonstrated a negative influence of blood from aged mice on muscle satellite cells and neurogenesis in young mice. We examined if we could reverse this effect of aged serum on stem cell proliferation by treating aged rats with NT-020, a dietary supplement containing blueberry, green tea, vitamin D3, and carnosine that has been shown to increase neurogenesis in aged rats. Young and aged rats were administered either control NIH-31 diet or one supplemented with NT-020 for 28 days, and serum was collected upon euthanasia. The serum was used in cultures of both rat hippocampal neural progenitor cells (NPCs) and rat bone marrow-derived mesenchymal stem cells (MSCs). Serum from aged rats significantly reduced cell proliferation as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-bromo-2'-deoxyuridine (BrdU) assays in both NPCs and MSCs. Serum from aged rats treated with NT-020 was not different from serum from young rats. Therefore, NT-020 rescued the effect of serum from aged rats to reduce stem cell proliferation.


Assuntos
Envelhecimento/sangue , Envelhecimento/efeitos dos fármacos , Suplementos Nutricionais , Células-Tronco Mesenquimais/citologia , Células-Tronco Neurais/citologia , Neurogênese/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Células-Tronco Neurais/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344
8.
J Neuroinflammation ; 12: 127, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26126965

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons in the CNS and leading to paralysis and death. There are currently no effective treatments for ALS due to the complexity and heterogeneity of factors involved in motor neuron degeneration. A complex of interrelated effectors have been identified in ALS, yet systemic factors indicating and/or reflecting pathological disease developments are uncertain. The purpose of the study was to identify humoral effectors as potential biomarkers during disease progression. METHODS: Thirteen clinically definite ALS patients and seven non-neurological controls enrolled in the study. Peripheral blood samples were obtained from each ALS patient and control at two visits separated by 6 months. The Revised ALS Functional Rating Scale (ALSFRS-R) was used to evaluate overall ALS-patient functional status at each visit. Eleven humoral factors were analyzed in sera. Cytokine levels (GM-CSF, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNF-α) were determined using the Bio-Rad Bio-Plex® Luminex 200 multiplex assay system. Nitrite, a breakdown product of NO, was quantified using a Griess Reagent System. Glutathione (GSH) concentrations were measured using a Glutathione Fluorometric Assay Kit. RESULTS: ALS patients had ALSFRS-R scores of 30.5 ± 1.9 on their first visit and 27.3 ± 2.7 on the second visit, indicating slight disease progression. Serum multiplex cytokine panels revealed statistically significant changes in IL-2, IL-5, IL-6, and IL-8 levels in ALS patients depending on disease status at each visit. Nitrite serum levels trended upwards in ALS patients while serum GSH concentrations were drastically decreased in sera from ALS patients versus controls at both visits. CONCLUSIONS: Our results demonstrated a systemic pro-inflammatory state and impaired antioxidant system in ALS patients during disease progression. Increased levels of pro-inflammatory IL-6, IL-8, and nitrite and significantly decreased endogenous antioxidant GSH levels could identify these humoral constituents as systemic biomarkers for ALS. However, systemic changes in IL-2, IL-5, and IL-6 levels determined between visits in ALS patients might indicate adaptive immune system responses dependent on current disease stage. These novel findings, showing dynamic changes in humoral effectors during disease progression, could be important for development of an effective treatment for ALS.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/diagnóstico , Progressão da Doença , Interleucina-2/sangue , Interleucina-5/sangue , Interleucina-6/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Glutationa/sangue , Humanos , Interleucina-8/sangue , Masculino , Pessoa de Meia-Idade , Nitritos/sangue , Prognóstico
9.
Cell Transplant ; 23(4-5): 531-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24480552

RESUMO

Ischemic brain injury in adults and neonates is a significant clinical problem with limited therapeutic interventions. Currently, clinicians have only tPA available for stroke treatment and hypothermia for cerebral palsy. Owing to the lack of treatment options, there is a need for novel treatments such as stem cell therapy. Various stem cells including cells from embryo, fetus, perinatal, and adult tissues have proved effective in preclinical and small clinical trials. However, a limiting factor in the success of these treatments is the delivery of the cells and their by-products (neurotrophic factors) into the injured brain. We have demonstrated that mannitol, a drug with the potential to transiently open the blood-brain barrier and facilitate the entry of stem cells and trophic factors, as a solution to the delivery problem. The combination of stem cell therapy and mannitol may improve therapeutic outcomes in adult stroke and neonatal cerebral palsy.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Manitol/química , Fatores de Crescimento Neural/farmacologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Barreira Hematoencefálica/metabolismo , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Humanos , Isquemia/terapia , Manitol/farmacologia , Células-Tronco/química , Acidente Vascular Cerebral/terapia
10.
Rejuvenation Res ; 17(1): 27-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24134194

RESUMO

Interventions to improve the cognitive health of older adults are of critical importance. In the current study, we conducted a double-blind, placebo-controlled clinical trial using a pill-based nutraceutical (NT-020) that contained a proprietary formulation of blueberry, carnosine, green tea, vitamin D3, and Biovin to evaluate the impact on changes in multiple domains of cognitive functioning. One hundred and five cognitively intact adults aged 65-85 years of age (M=73.6 years) were randomized to receive NT-020 (n=52) or a placebo (n=53). Participants were tested with a battery of cognitive performance tests that were classified into six broad domains--episodic memory, processing speed, verbal ability, working memory, executive functioning, and complex speed at baseline and 2 months later. The results indicated that persons taking NT-020 improved significantly on two measures of processing speed across the 2-month test period in contrast to persons on the placebo whose performance did not change. None of the other cognitive ability measures were related to intervention group. The results also indicated that the NT-020 was well tolerated by older adults, and the presence of adverse events or symptoms did not differ between the NT-020 and placebo groups. Overall, the results of the current study were promising and suggest the potential for interventions like these to improve the cognitive health of older adults.


Assuntos
Cognição/fisiologia , Suplementos Nutricionais , Adulto , Idoso , Idoso de 80 Anos ou mais , Suplementos Nutricionais/efeitos adversos , Feminino , Seguimentos , Humanos , Masculino , Cooperação do Paciente , Placebos
11.
Cell Transplant ; 23(12): 1613-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25565636

RESUMO

Sanfilippo syndrome type III B (MPS III B) is an inherited disorder characterized by a deficiency of α-N-acetylglucosaminidase (Naglu) enzyme leading to accumulation of heparan sulfate in lysosomes and severe neurological deficits. We have previously shown that a single administration of human umbilical cord mononuclear cells (hUCB MNCs) into Naglu knockout mice decreased behavioral abnormalities and tissue pathology. In this study, we tested whether repeated doses of hUCB MNCs would be more beneficial than a single dose of cells. Naglu mice at 3 months of age were randomly assigned to either a Media-only group or one of three hUCB MNC treatment groups--single low dose (3 × 10(6) cells), single high dose (1.8 × 10(7) cells), or multiple doses (3 × 10(6) cells monthly for 6 months) delivered intravenously; cyclosporine was injected intraperitoneally to immune suppress the mice for the duration of the study. An additional control group of wild-type mice was also used. We measured anxiety in an open field test and cognition in an active avoidance test prior to treatment and then at monthly intervals for 6 months. hUCB MNCs restored normal anxiety-like behavior in these mice (p < 0.001). The repeated cell administrations also restored hippocampal cytoarchitecture, protected the dendritic tree, decreased GM3 ganglioside accumulation, and decreased microglial activation, particularly in the hippocampus and cortex. These data suggest that the neuroprotective effect of hUCB MNCs can be enhanced by repeated cell administrations.


Assuntos
Transplante de Células-Tronco de Sangue do Cordão Umbilical , Mucopolissacaridose III/terapia , Cordão Umbilical/citologia , Acetilglucosaminidase/deficiência , Acetilglucosaminidase/metabolismo , Animais , Ansiedade/complicações , Ansiedade/fisiopatologia , Aprendizagem da Esquiva , Comportamento Animal , Encéfalo/patologia , Contagem de Células , Cognição , Dendritos/patologia , Modelos Animais de Doenças , Feminino , Gangliosídeo G(M3)/metabolismo , Humanos , Masculino , Camundongos Knockout , Microglia/patologia , Mucopolissacaridose III/complicações , Mucopolissacaridose III/fisiopatologia , Fenótipo , Resultado do Tratamento , Urina
12.
Stem Cells Dev ; 22(3): 412-21, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22816379

RESUMO

Alzheimer's disease (AD) is the most common progressive age-related dementia in the elderly and the fourth major cause of disability and mortality in that population. The disease is pathologically characterized by deposition of ß-amyloid plaques neurofibrillary tangles in the brain. Current strategies for the treatment of AD are symptomatic only. As such, they are less than efficacious in terms of significantly slowing or halting the underlying pathophysiological progression of the disease. Modulation by cell therapy may be new promising disease-modifying therapy. Recently, we showed reduction in amyloid-ß (Aß) levels/ß-amyloid plaques and associated astrocytosis following low-dose infusions of mononuclear human umbilical cord blood cells (HUCBCs). Our current study extended our previous findings by examining cognition via (1) the rotarod test, (2) a 2-day version of the radial-arm water maze test, and (3) a subsequent observation in an open pool platform test to characterize the effects of monthly peripheral HUCBC infusion (1×10(6) cells/µL) into the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) from 6 to 12 months of age. We show that HUCBC therapy correlates with decreased (1) cognitive impairment, (2) Aß levels/ß-amyloid plaques, (3) amyloidogenic APP processing, and (4) reactive microgliosis after a treatment of 6 or 10 months. As such, this report lays the groundwork for an HUCBC therapy as potentially novel alternative to oppose AD at the disease-modifying level.


Assuntos
Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/metabolismo , Cognição , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Doença de Alzheimer/patologia , Doença de Alzheimer/psicologia , Animais , Encéfalo/patologia , Células Cultivadas , Feminino , Humanos , Infusões Parenterais , Antígenos Comuns de Leucócito/metabolismo , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Destreza Motora , Placa Amiloide/patologia , Placa Amiloide/terapia , Recuperação de Função Fisiológica , Teste de Desempenho do Rota-Rod
13.
PLoS One ; 7(2): e31254, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22319620

RESUMO

BACKGROUND: A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25 × 106 cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. METHODOLOGY/PRINCIPAL FINDINGS: Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 106 or 2.5 × 106 cells from 13 weeks of age. A third, pre-symptomatic, group received 106 cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 106 cells pre-symptomatically or 2.5 × 106 cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Sangue Fetal/transplante , Animais , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação , Infusões Intravenosas , Camundongos , Neurônios Motores , Resultado do Tratamento
14.
Curr Alzheimer Res ; 9(4): 500-6, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21875408

RESUMO

In a previous in vitro study, the standardized turmeric extract, HSS-888, showed strong inhibition of Aß aggregation and secretion in vitro, indicating that HSS-888 might be therapeutically important. Therefore, in the present study, HSS-888 was evaluated in vivo using transgenic 'Alzheimer' mice (Tg2576) over-expressing Aß protein. Following a six-month prevention period where mice received extract HSS-888 (5mg/mouse/day), tetrahydrocurcumin (THC) or a control through ingestion of customized animal feed pellets (0.1% w/w treatment), HSS-888 significantly reduced brain levels of soluble (∼40%) and insoluble (∼20%) Aß as well as phosphorylated Tau protein (∼80%). In addition, primary cultures of microglia from these mice showed increased expression of the cytokines IL-4 and IL-2. In contrast, THC treatment only weakly reduced phosphorylated Tau protein and failed to significantly alter plaque burden and cytokine expression. The findings reveal that the optimized turmeric extract HSS-888 represents an important step in botanical based therapies for Alzheimer's disease by inhibiting or improving plaque burden, Tau phosphorylation, and microglial inflammation leading to neuronal toxicity.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Amiloidose/tratamento farmacológico , Análise de Variância , Animais , Antioxidantes/farmacologia , Curcuma , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/farmacologia
15.
Cell Transplant ; 20(1): 85-94, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20887684

RESUMO

Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.


Assuntos
Células-Tronco Adultas/citologia , Células Sanguíneas/citologia , Sangue Fetal/citologia , Doenças Neurodegenerativas/terapia , Transplante de Células-Tronco , Células-Tronco Adultas/transplante , Humanos
16.
PLoS One ; 5(5): e10496, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20463965

RESUMO

Adult stem cells are present in many tissues including, skin, muscle, adipose, bone marrow, and in the brain. Neuroinflammation has been shown to be a potent negative regulator of stem cell and progenitor cell proliferation in the neurogenic regions of the brain. Recently we demonstrated that decreasing a key neuroinflammatory cytokine IL-1beta in the hippocampus of aged rats reversed the age-related cognitive decline and increased neurogenesis in the age rats. We also have found that nutraceuticals have the potential to reduce neuroinflammation, and decrease oxidative stress. The objectives of this study were to determine if spirulina could protect the proliferative potential of hippocampal neural progenitor cells from an acute systemic inflammatory insult of lipopolysaccharide (LPS). To this end, young rats were fed for 30 days a control diet or a diet supplemented with 0.1% spirulina. On day 28 the rats were given a single i.p. injection of LPS (1 mg/kg). The following day the rats were injected with BrdU (50 mg/kg b.i.d. i.p.) and were sacrificed 24 hours after the first injection of BrdU. Quantification of the BrdU positive cells in the subgranular zone of the dentate gyrus demonstrated a decrease in proliferation of the stem/progenitor cells in the hippocampus as a result of the LPS insult. Furthermore, the diet supplemented with spirulina was able to negate the LPS induced decrease in stem/progenitor cell proliferation. In a second set of studies we examined the effects of spirulina either alone or in combination with a proprietary formulation (NT-020) of blueberry, green tea, vitamin D3 and carnosine on the function of bone marrow and CD34+ cells in vitro. Spirulina had small effects on its own and more than additive effects in combination with NT-020 to promote mitochondrial respiration and/or proliferation of these cells in culture. When examined on neural stem cells in culture spirulina increased proliferation at baseline and protected against the negative influence of TNFalpha to reduce neural stem cell proliferation. These results support the hypothesis that a diet enriched with spirulina and other nutraceuticals may help protect the stem/progenitor cells from insults.


Assuntos
Lipopolissacarídeos/farmacologia , Neurônios/citologia , Spirulina/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Animais , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/citologia , Humanos , Masculino , Camundongos , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Endogâmicos F344 , Spirulina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
17.
Cell Med ; 1(3): 137-142, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21379315

RESUMO

The present study explored the prophylactic and restorative benefits of cacao and red sage using both in vitro and in vivo models of stroke. For the in vitro study, we initially exposed primary rat cells to the established oxygen-glucose deprivation (OGD) stroke model followed by reperfusion under normoxic conditions, then added different cacao and sage concentrations to the cell culture media. Trypan blue cell viability results revealed specific cacao and sage dosages exerted significant therapeutic effects against OGD-induced cell death compared to cultured cells treated with extract vehicle. We next embarked on testing the therapeutic effects of cacao and sage in an in vivo model of stroke when extract treatment commenced either prior to or after transient middle cerebral artery occlusion (MCAo). Significant reduction in ischemic cell death within the peri-infarct area coupled with better performance in routine motor and neurological tasks were demonstrated by stroke animals that received cacao or sage extracts prior to MCAo compared to those that received the extracts or vehicle after MCAo. In summary, the present results demonstrate that neuroprotective effects were afforded by plant extract treatment, and that the in vitro stroke paradigm approximates in vivo efficacy when considering prophylactic treatment for stroke.

18.
Med Sci Monit ; 16(1): BR1-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20037479

RESUMO

BACKGROUND: Adult stem cells are known to have a reduced restorative capacity as we age and are more vulnerable to oxidative stress resulting in a reduced ability of the body to heal itself. We have previously reported that a proprietary nutraceutical formulation, NT-020, promotes proliferation of human hematopoietic stem cells in vitro and protects stem cells from oxidative stress when given chronically to mice in vivo. Because previous reports suggest that the blue green algae, Aphanizomenon flos-aquae (AFA) can modulate immune function in animals, we sought to investigate the effects of AFA on human stem cells in cultures. MATERIAL/METHODS: Two AFA products were used for extraction: AFA whole (AFA-W) and AFA cellular concentrate (AFA-C). Water and ethanol extractions were performed to isolate active compounds for cell culture experiments. For cell proliferation analysis, human bone marrow cells or human CD34+ cells were cultured in 96 well plates and treated for 72 hours with various extracts. An MTT assay was used to estimate cell proliferation. RESULTS: We report here that the addition of an ethanol extract of AFA-cellular concentrate further enhances the stem cell proliferative action of NT-020 when incubated with human adult bone marrow cells or human CD34+ hematopoietic progenitors in culture. Algae extracts alone had only moderate activity in these stem cell proliferation assays. CONCLUSIONS: This preliminary study suggests that NT-020 plus the ethanol extract of AFA cellular concentrate may act to promote proliferation of human stem cell populations.


Assuntos
Células-Tronco Adultas/citologia , Aphanizomenon/química , Células da Medula Óssea/citologia , Proliferação de Células/efeitos dos fármacos , Misturas Complexas/farmacologia , Células-Tronco Adultas/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Humanos , Técnicas In Vitro , Sais de Tetrazólio , Tiazóis
19.
Stem Cells Dev ; 19(4): 439-52, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19860544

RESUMO

Cell therapy remains an experimental treatment for neurological disorders. A major obstacle in pursuing the clinical application of this therapy is finding the optimal cell type that will allow benefit to a large patient population with minimal complications. A cell type that is a complete match of the transplant recipient appears as an optimal scenario. Here, we report that menstrual blood may be an important source of autologous stem cells. Immunocytochemical assays of cultured menstrual blood reveal that they express embryonic-like stem cell phenotypic markers (Oct4, SSEA, Nanog), and when grown in appropriate conditioned media, express neuronal phenotypic markers (Nestin, MAP2). In order to test the therapeutic potential of these cells, we used the in vitro stroke model of oxygen glucose deprivation (OGD) and found that OGD-exposed primary rat neurons that were co-cultured with menstrual blood-derived stem cells or exposed to the media collected from cultured menstrual blood exhibited significantly reduced cell death. Trophic factors, such as VEGF, BDNF, and NT-3, were up-regulated in the media of OGD-exposed cultured menstrual blood-derived stem cells. Transplantation of menstrual blood-derived stem cells, either intracerebrally or intravenously and without immunosuppression, after experimentally induced ischemic stroke in adult rats also significantly reduced behavioral and histological impairments compared to vehicle-infused rats. Menstrual blood-derived cells exemplify a source of "individually tailored" donor cells that completely match the transplant recipient, at least in women. The present neurostructural and behavioral benefits afforded by transplanted menstrual blood-derived cells support their use as a stem cell source for cell therapy in stroke.


Assuntos
Células Sanguíneas/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Menstruação/sangue , Neurônios , Fator 3 de Transcrição de Octâmero/metabolismo , Antígenos Embrionários Estágio-Específicos/metabolismo , Acidente Vascular Cerebral , Adulto , Animais , Biomarcadores/metabolismo , Células Sanguíneas/metabolismo , Células Sanguíneas/transplante , Morte Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/transplante , Feminino , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Homeobox Nanog , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Ratos , Transplante de Células-Tronco/métodos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/cirurgia
20.
Curr Alzheimer Res ; 6(6): 564-71, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19715544

RESUMO

Inhibition of beta-amyloid (A beta) accumulation and A beta fibril (fA beta) formation from A beta are attractive therapeutic targets for the treatment of Alzheimer's disease (AD). While previous studies have shown anti-amyloidogenic effects of curcumin in vitro and in vivo, no studies have examined optimized turmeric extracts enriched in curcuminoids or turmerones. Three standardized turmeric extracts, HSS-838, HSS-848, and HSS-888, were prepared with different chemical profiles to investigate their potential therapeutic benefits for AD. These extracts were fingerprinted by DART TOF-MS to reveal the significant chemical complexity. In addition four curcuminoids (curcumin, tetrahydrocurcumin, demethoxycurcumin and bisdemethoxycurcumin) were also examined. We measured the effects of the extracts and curcuminoids, on the aggregation of A beta by using a thioflavin T cell-free assay and the secretion of A beta from human neuronal cells (SweAPP N2A cells) in vitro. All three extracts and the curcuminoids showed dose-dependent inhibition of fA beta aggregation from A beta(1-42) in the cell-free assay, with IC(50) values of

Assuntos
Peptídeos beta-Amiloides/metabolismo , Curcumina/farmacologia , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Linhagem Celular , Meios de Cultivo Condicionados , Curcuma , Curcumina/análogos & derivados , Diarileptanoides , Ensaio de Imunoadsorção Enzimática , Humanos , Espectrometria de Massas , Fitoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA