Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RNA ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777381

RESUMO

Residing in the 5' untranslated region of the mRNA, the 2'-deoxyguanosine (2'-dG) riboswitch mRNA element adopts an alternative structure with the binding of the 2'-dG molecule, which terminates transcription. In general, RNA conformations are strongly affected by positively charged metal ions (especially Mg2+). We have quantitatively explored the combined effect of ligand (2'-dG) and Mg2+ binding on the energy landscape of the aptamer domain of the 2'-dG riboswitch with both explicit solvent all atom molecular dynamics simulations and SHAPE biochemical probing experiments. We show that both ligand and Mg2+ are required for the stabilization of the aptamer domain; however, the two factors function in different ways. While the addition of Mg2+ remodels the energy landscape and reduces its frustration by the formation of additional contacts, the binding of 2'-dG eliminates the metastable states by building a compact core for the aptamer domain. In particular, Mg2+ ions and ligand binding are required to stabilize the most unstable helix P1 (which needs to unfold to activate the transcription platform), and the riboswitch core formed by the backbone of the P2 and P3 helices. They also facilitate a more compact structure in the three-way junction region.

2.
Res Sq ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559036

RESUMO

Chromatin conformation capture followed by next-generation sequencing in combination with large-scale polymer simulations (4DHiC) produces detailed information on genomic loci interactions, allowing for the interrogation of 3D spatial genomic structures. Here, Hi-C data was acquired from the infection of fetal lung fibroblast (MRC5) cells with α-coronavirus 229E (CoV229E). Experimental Hi-C contact maps were used to determine viral-induced changes in genomic architecture over a 48-hour time period following viral infection, revealing substantial alterations in contacts within chromosomes and in contacts between different chromosomes. To gain further structural insight and quantify the underlying changes, we applied the 4DHiC polymer simulation method to reconstruct the 3D genomic structures and dynamics corresponding to the Hi-C maps. The models successfully reproduced experimental Hi-C data, including the changes in contacts induced by viral infection. Our 3D spatial simulations uncovered widespread chromatin restructuring, including increased chromosome compactness and A-B compartment mixing arising from infection. Our model also suggests increased spatial accessibility to regions containing interferon-stimulated genes upon infection with CoV229E, followed by chromatin restructuring at later time points, potentially inducing the migration of chromatin into more compact regions. This is consistent with previously observed suppression of gene expression. Our spatial genomics study provides a mechanistic structural basis for changes in chromosome architecture induced by coronavirus infection in lung cells.

3.
BMC Bioinformatics ; 24(1): 441, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37990143

RESUMO

BACKGROUND: Correlation metrics are widely utilized in genomics analysis and often implemented with little regard to assumptions of normality, homoscedasticity, and independence of values. This is especially true when comparing values between replicated sequencing experiments that probe chromatin accessibility, such as assays for transposase-accessible chromatin via sequencing (ATAC-seq). Such data can possess several regions across the human genome with little to no sequencing depth and are thus non-normal with a large portion of zero values. Despite distributed use in the epigenomics field, few studies have evaluated and benchmarked how correlation and association statistics behave across ATAC-seq experiments with known differences or the effects of removing specific outliers from the data. Here, we developed a computational simulation of ATAC-seq data to elucidate the behavior of correlation statistics and to compare their accuracy under set conditions of reproducibility. RESULTS: Using these simulations, we monitored the behavior of several correlation statistics, including the Pearson's R and Spearman's [Formula: see text] coefficients as well as Kendall's [Formula: see text] and Top-Down correlation. We also test the behavior of association measures, including the coefficient of determination R[Formula: see text], Kendall's W, and normalized mutual information. Our experiments reveal an insensitivity of most statistics, including Spearman's [Formula: see text], Kendall's [Formula: see text], and Kendall's W, to increasing differences between simulated ATAC-seq replicates. The removal of co-zeros (regions lacking mapped sequenced reads) between simulated experiments greatly improves the estimates of correlation and association. After removing co-zeros, the R[Formula: see text] coefficient and normalized mutual information display the best performance, having a closer one-to-one relationship with the known portion of shared, enhanced loci between simulated replicates. When comparing values between experimental ATAC-seq data using a random forest model, mutual information best predicts ATAC-seq replicate relationships. CONCLUSIONS: Collectively, this study demonstrates how measures of correlation and association can behave in epigenomics experiments. We provide improved strategies for quantifying relationships in these increasingly prevalent and important chromatin accessibility assays.


Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cromatina/genética , Reprodutibilidade dos Testes , Sequenciamento de Cromatina por Imunoprecipitação , Transposases/genética , Análise de Sequência de DNA
4.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873121

RESUMO

Polycomb Repressive Complex 2 (PRC2) is an epigenetic regulator that trimethylates lysine 27 of histone 3 (H3K27me3) and is essential for embryonic development and cellular differentiation. H3K27me3 is associated with transcriptionally repressed chromatin and is established when PRC2 is allosterically activated upon methyl-lysine binding by the regulatory subunit EED. Automethylation of the catalytic subunit EZH2 stimulates its activity by an unknown mechanism. Here, we show that PRC2 forms a dimer on chromatin in which an inactive, automethylated PRC2 protomer is the allosteric activator of a second PRC2 that is poised to methylate H3 of a substrate nucleosome. Functional assays support our model of allosteric trans-autoactivation via EED, suggesting a novel mechanism mediating context-dependent activation of PRC2. Our work showcases the molecular mechanism of auto-modification coupled dimerization in the regulation of chromatin modifying complexes.

5.
Nat Commun ; 14(1): 5582, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696823

RESUMO

Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.


Assuntos
Magnoliopsida , Aminoacil-RNA de Transferência , Aminoacil-RNA de Transferência/genética , RNA Mensageiro/genética , Anticódon , Ribossomos , Biossíntese de Proteínas
6.
J Mol Biol ; 434(18): 167788, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35963460

RESUMO

Messenger RNA regulatory elements, such as riboswitches, can display a high degree of flexibility. By characterizing their energy landscapes, and corresponding distributions of 3D configurations, structure-function relationships can be elucidated. Molecular dynamics simulation with enhanced sampling is an important strategy used to computationally access free energy landscapes characterizing the accessible 3D conformations of RNAs. While tertiary contacts are thought to play important roles in RNA dynamics, it is difficult, in explicit solvent, to sample the formation and breakage of tertiary contacts, such as helix-helix interactions, pseudoknot interactions, and junction interactions, while maintaining intact secondary structure elements. To this end, we extend previously developed collective variables and metadynamics efforts, to establish a simple metadynamics protocol, which utilizes only one collective variable, based on multiple tertiary contacts, to characterize the underlying free energy landscape of any RNA molecule. We develop a modified collective variable, the tertiary contacts distance (QTC), which can probe the formation and breakage of all or selectively chosen tertiary contacts of the RNA. The SAM-I riboswitch in the presence of three ionic and substrate conditions was investigated and validated against the structure ensemble previously generated using SAXS experiments. This efficient and easy to implement all-atom MD simulation based approach incorporating metadynamics to study RNA conformational dynamics can also be transferred to any other type of biomolecule.


Assuntos
Conformação de Ácido Nucleico , Riboswitch , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios X
7.
Nucleic Acids Res ; 50(14): 8302-8320, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35808938

RESUMO

Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.


Assuntos
Fator G para Elongação de Peptídeos , Ribossomos , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/química , RNA de Transferência/metabolismo , Ribossomos/metabolismo
8.
Curr Res Struct Biol ; 4: 220-230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35765663

RESUMO

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic and catastrophic, worldwide health and economic impacts. The spike protein on the viral surface is responsible for viral entry into the host cell. The binding of spike protein to the host cell receptor ACE2 is the first step leading to fusion of the host and viral membranes. Despite the vast amount of structure data that has been generated for the spike protein of SARS-CoV-2, many of the detailed structures of the spike protein in different stages of the fusion pathway are unknown, leaving a wealth of potential drug-target space unexplored. The atomic-scale structure of the complete S2 segment, as well as the complete fusion intermediate are also unknown and represent major gaps in our knowledge of the infectious pathway of SAR-CoV-2. The conformational changes of the spike protein during this process are similarly not well understood. Here we present structures of the spike protein at different stages of the fusion process. With the transitions being a necessary step before the receptor binding, we propose sites along the transition pathways as potential targets for drug development.

9.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34645712

RESUMO

Chromosomes are segmented into domains and compartments, but how these structures are spatially related in three dimensions (3D) is unclear. Here, we developed tools that directly extract 3D information from Hi-C experiments and integrate the data across time. With our "4DHiC" method, we use X chromosome inactivation (XCI) as a model to examine the time evolution of 3D chromosome architecture during large-scale changes in gene expression. Our modeling resulted in several insights. Both A/B and S1/S2 compartments divide the X chromosome into hemisphere-like structures suggestive of a spatial phase-separation. During the XCI, the X chromosome transits through A/B, S1/S2, and megadomain structures by undergoing only partial mixing to assume new structures. Interestingly, when an active X chromosome (Xa) is reorganized into an inactive X chromosome (Xi), original underlying compartment structures are not fully eliminated within the Xi superstructure. Our study affirms slow mixing dynamics in the inner chromosome core and faster dynamics near the surface where escapees reside. Once established, the Xa and Xi resemble glassy polymers where mixing no longer occurs. Finally, Xist RNA molecules initially reside within the A compartment but transition to the interface between the A and B hemispheres and then spread between hemispheres via both surface and core to establish the Xi.


Assuntos
Mamíferos/genética , Cromossomo X , Animais , Inativação do Cromossomo X
10.
J Phys Chem B ; 125(24): 6479-6490, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34106719

RESUMO

Magnesium plays a critical role in the structure, dynamics, and function of RNA. The precise microscopic effect of chelated magnesium on RNA structure is yet to be explored. Magnesium is known to act through its diffuse cloud around RNA, through the outer sphere (water-mediated), inner sphere, and often chelated ion-mediated interactions. A mechanism is proposed for the role of experimentally discovered site-specific chelated magnesium ions on the conformational dynamics of SAM-I riboswitch aptamers in bacteria. This mechanism is observed with atomistic simulations performed in a physiological mixed salt environment at a high temperature. The simulations were validated with phosphorothioate interference mapping experiments that help to identify crucial inner-sphere Mg2+ sites prescribing an appropriate initial distribution of inner- and outer-sphere magnesium ions to maintain a physiological ion concentration of monovalent and divalent salts. A concerted role of two chelated magnesium ions is newly discovered since the presence of both supports the formation of the pseudoknot. This constitutes a logical AND gate. The absence of any of these magnesium ions instigates the dissociation of long-range pseudoknot interaction exposing the inner core of the RNA. A base triple is the epicenter of the magnesium chelation effect. It allosterically controls RNA pseudoknot by bolstering the direct effect of magnesium chelation in protecting the functional fold of RNA to control ON and OFF transcription switching.


Assuntos
Riboswitch , Magnésio , Conformação de Ácido Nucleico , RNA/genética
11.
Biomolecules ; 11(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477938

RESUMO

Seasonal flu is an acute respiratory disease that exacts a massive toll on human populations, healthcare systems and economies. The disease is caused by an enveloped Influenza virus containing eight ribonucleoprotein (RNP) complexes. Each RNP incorporates multiple copies of nucleoprotein (NP), a fragment of the viral genome (vRNA), and a viral RNA-dependent RNA polymerase (POL), and is responsible for packaging the viral genome and performing critical functions including replication and transcription. A complete model of an Influenza RNP in atomic detail can elucidate the structural basis for viral genome functions, and identify potential targets for viral therapeutics. In this work we construct a model of a complete Influenza A RNP complex in atomic detail using multiple sources of structural and sequence information and a series of homology-modeling techniques, including a motif-matching fragment assembly method. Our final model provides a rationale for experimentally-observed changes to viral polymerase activity in numerous mutational assays. Further, our model reveals specific interactions between the three primary structural components of the RNP, including potential targets for blocking POL-binding to the NP-vRNA complex. The methods developed in this work open the possibility of elucidating other functionally-relevant atomic-scale interactions in additional RNP structures and other biomolecular complexes.


Assuntos
Vírus da Influenza A/metabolismo , Modelos Biológicos , Nucleoproteínas/metabolismo , RNA Viral/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , RNA Viral/química , Relação Estrutura-Atividade
12.
PLoS Comput Biol ; 16(11): e1008293, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33151943

RESUMO

Molecular Dynamics (MD) simulations seek to provide atomic-level insights into conformationally dynamic biological systems at experimentally relevant time resolutions, such as those afforded by single-molecule fluorescence measurements. However, limitations in the time scales of MD simulations and the time resolution of single-molecule measurements have challenged efforts to obtain overlapping temporal regimes required for close quantitative comparisons. Achieving such overlap has the potential to provide novel theories, hypotheses, and interpretations that can inform idealized experimental designs that maximize the detection of the desired reaction coordinate. Here, we report MD simulations at time scales overlapping with in vitro single-molecule Förster (fluorescence) resonance energy transfer (smFRET) measurements of the amino acid binding protein LIV-BPSS at sub-millisecond resolution. Computationally efficient all-atom structure-based simulations, calibrated against explicit solvent simulations, were employed for sampling multiple cycles of LIV-BPSS clamshell-like conformational changes on the time scale of seconds, examining the relationship between these events and those observed by smFRET. The MD simulations agree with the smFRET measurements and provide valuable information on local dynamics of fluorophores at their sites of attachment on LIV-BPSS and the correlations between fluorophore motions and large-scale conformational changes between LIV-BPSS domains. We further utilize the MD simulations to inform the interpretation of smFRET data, including Förster radius (R0) and fluorophore orientation factor (κ2) determinations. The approach we describe can be readily extended to distinct biochemical systems, allowing for the interpretation of any FRET system conjugated to protein or ribonucleoprotein complexes, including those with more conformational processes, as well as those implementing multi-color smFRET.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas/química , Técnicas Biossensoriais , Simulação de Dinâmica Molecular , Conformação Proteica , Estudos de Tempo e Movimento
13.
J Chem Inf Model ; 60(5): 2436-2442, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32422044

RESUMO

We describe common approaches to atomistic structure modeling with single particle analysis derived cryo-EM maps. Several strategies for atomistic model building and atomistic model fitting methods are discussed, including selection criteria and implementation procedures. In covering basic concepts and caveats, this short perspective aims to help facilitate active discussion between scientists at different levels with diverse backgrounds.


Assuntos
Proteínas , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica
14.
Proc Natl Acad Sci U S A ; 117(7): 3610-3620, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32024753

RESUMO

The substrate for ribosomes actively engaged in protein synthesis is a ternary complex of elongation factor Tu (EF-Tu), aminoacyl-tRNA (aa-tRNA), and GTP. EF-Tu plays a critical role in mRNA decoding by increasing the rate and fidelity of aa-tRNA selection at each mRNA codon. Here, using three-color single-molecule fluorescence resonance energy transfer imaging and molecular dynamics simulations, we examine the timing and role of conformational events that mediate the release of aa-tRNA from EF-Tu and EF-Tu from the ribosome after GTP hydrolysis. Our investigations reveal that conformational changes in EF-Tu coordinate the rate-limiting passage of aa-tRNA through the accommodation corridor en route to the peptidyl transferase center of the large ribosomal subunit. Experiments using distinct inhibitors of the accommodation process further show that aa-tRNA must at least partially transit the accommodation corridor for EF-Tu⋅GDP to release. aa-tRNAs failing to undergo peptide bond formation at the end of accommodation corridor passage after EF-Tu release can be reengaged by EF-Tu⋅GTP from solution, coupled to GTP hydrolysis. These observations suggest that additional rounds of ternary complex formation can occur on the ribosome during proofreading, particularly when peptide bond formation is slow, which may serve to increase both the rate and fidelity of protein synthesis at the expense of GTP hydrolysis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transferência Ressonante de Energia de Fluorescência , Guanosina Trifosfato/metabolismo , Cinética , Fator Tu de Elongação de Peptídeos/genética , Biossíntese de Proteínas , RNA de Transferência/genética , Aminoacil-RNA de Transferência/genética , Subunidades Ribossômicas Maiores/genética , Subunidades Ribossômicas Maiores/metabolismo , Ribossomos/genética
15.
J Mol Biol ; 432(9): 3064-3077, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32061931

RESUMO

Selection of correct aminoacyl (aa)-tRNA at the ribosomal A site is fundamental to maintaining translational fidelity. Aa-tRNA selection is a multistep process facilitated by the guanosine triphosphatase elongation factor (EF)-Tu. EF-Tu delivers aa-tRNA to the ribosomal A site and participates in tRNA selection. The structural mechanism of how EF-Tu is involved in proofreading remains to be fully resolved. Here, we provide evidence that switch I of EF-Tu facilitates EF-Tu's involvement during aa-tRNA selection. Using structure-based and explicit solvent molecular dynamics simulations based on recent cryo-electron microscopy reconstructions, we studied the conformational change of EF-Tu from the guanosine triphosphate to guanine diphosphate conformation during aa-tRNA accommodation. Switch I of EF-Tu rapidly converts from an α-helix into a ß-hairpin and moves to interact with the acceptor stem of the aa-tRNA. In doing so, switch I gates the movement of the aa-tRNA during accommodation through steric interactions with the acceptor stem. Pharmacological inhibition of the aa-tRNA accommodation pathway prevents the proper positioning of switch I with the aa-tRNA acceptor stem, suggesting that the observed interactions are specific for cognate aa-tRNA substrates, and thus capable of contributing to the fidelity mechanism.


Assuntos
Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Aminoacil-RNA de Transferência/metabolismo , Microscopia Crioeletrônica , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Ribossomos/metabolismo
16.
Nat Commun ; 11(1): 148, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919376

RESUMO

Long non-coding RNAs (lncRNAs) constitute a significant fraction of the transcriptome, playing important roles in development and disease. However, our understanding of structure-function relationships for this emerging class of RNAs has been limited to secondary structures. Here, we report the 3-D atomistic structural study of epigenetic lncRNA, Braveheart (Bvht), and its complex with CNBP (Cellular Nucleic acid Binding Protein). Using small angle X-ray scattering (SAXS), we elucidate the ensemble of Bvht RNA conformations in solution, revealing that Bvht lncRNA has a well-defined, albeit flexible 3-D structure that is remodeled upon CNBP binding. Our study suggests that CNBP binding requires multiple domains of Bvht and the RHT/AGIL RNA motif. We show that RHT/AGIL, previously shown to interact with CNBP, contains a highly flexible loop surrounded by more ordered helices. As one of the largest RNA-only 3-D studies, the work lays the foundation for future structural studies of lncRNA-protein complexes.


Assuntos
Conformação de Ácido Nucleico , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Humanos , Magnésio/química , Modelos Moleculares , Ligação Proteica , Domínios Proteicos/fisiologia , Espalhamento a Baixo Ângulo
17.
Curr Opin Struct Biol ; 55: 104-113, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31125796

RESUMO

Recent advances in biotechnology such as Hi-C, CRISPR/Cas9 and ribosome display have placed nucleoprotein complexes at center stage. Understanding the structural dynamics of these complexes aids in optimizing protocols and interpreting data for these new technologies. The integration of simulation and experiment has helped advance mechanistic understanding of these systems. Coarse-grained simulations, reduced-description models, and explicit solvent molecular dynamics simulations yield useful complementary perspectives on nucleoprotein complex structural dynamics. When combined with Hi-C, cryo-EM, and single molecule measurements, these simulations integrate disparate forms of experimental data into a coherent mechanism.


Assuntos
Cromatina/química , Nucleossomos/química , Ribossomos/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Microscopia Crioeletrônica/métodos , Conformação Molecular , Simulação de Dinâmica Molecular
18.
Methods Mol Biol ; 1933: 381-388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30945198

RESUMO

Long noncoding RNAs play important roles in plant epigenetic processes. While many extensive studies have delineated the range of their functions in plants, few detailed studies of the structure of plant long noncoding RNAs have been performed. Here, we review genome-wide and system-specific structural studies and describe methodology for structure determination.


Assuntos
Arabidopsis/genética , Conformação de Ácido Nucleico , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Pareamento de Bases , Sequência de Bases , RNA de Plantas/química , RNA de Plantas/genética , RNA de Plantas/metabolismo
19.
J Comput Chem ; 40(21): 1919-1930, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-30994934

RESUMO

The growing interest in the complexity of biological interactions is continuously driving the need to increase system size in biophysical simulations, requiring not only powerful and advanced hardware but adaptable software that can accommodate a large number of atoms interacting through complex forcefields. To address this, we developed and implemented strategies in the GENESIS molecular dynamics package designed for large numbers of processors. Long-range electrostatic interactions were parallelized by minimizing the number of processes involved in communication. A novel algorithm was implemented for nonbonded interactions to increase single instruction multiple data (SIMD) performance, reducing memory usage for ultra large systems. Memory usage for neighbor searches in real-space nonbonded interactions was reduced by approximately 80%, leading to significant speedup. Using experimental data describing physical 3D chromatin interactions, we constructed the first atomistic model of an entire gene locus (GATA4). Taken together, these developments enabled the first billion-atom simulation of an intact biomolecular complex, achieving scaling to 65,000 processes (130,000 processor cores) with 1 ns/day performance. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Cromatina/química , Simulação de Dinâmica Molecular , Algoritmos , Fenômenos Biofísicos , Cromatina/genética , Software
20.
Nucleic Acids Res ; 47(6): 3158-3170, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30605518

RESUMO

Investigations of most riboswitches remain confined to the ligand-binding aptamer domain. However, during the riboswitch mediated transcription regulation process, the aptamer domain and the expression platform compete for a shared strand. If the expression platform dominates, an anti-terminator helix is formed, and the transcription process is active (ON state). When the aptamer dominates, transcription is terminated (OFF state). Here, we use an expression platform switching experimental assay and structure-based electrostatic simulations to investigate this ON-OFF transition of the full length SAM-I riboswitch and its magnesium concentration dependence. Interestingly, we find the ratio of the OFF population to the ON population to vary non-monotonically as magnesium concentration increases. Upon addition of magnesium, the aptamer domain pre-organizes, populating the OFF state, but only up to an intermediate magnesium concentration level. Higher magnesium concentration preferentially stabilizes the anti-terminator helix, populating the ON state, relatively destabilizing the OFF state. Magnesium mediated aptamer-expression platform domain closure explains this relative destabilization of the OFF state at higher magnesium concentration. Our study reveals the functional potential of magnesium in controlling transcription of its downstream genes and underscores the importance of a narrow concentration regime near the physiological magnesium concentration ranges, striking a balance between the OFF and ON states in bacterial gene regulation.


Assuntos
Aptâmeros de Nucleotídeos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Magnésio/química , Riboswitch/efeitos dos fármacos , Aptâmeros de Nucleotídeos/antagonistas & inibidores , Bacillus subtilis/genética , Magnésio/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Riboswitch/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA