RESUMO
Retinoic acid receptor-related orphan receptor γ (RORγt) controls the differentiation of naive CD4(+) T cells into the TH17 lineage, which are critical cells in the pathogenesis of autoimmune diseases. Here we report that during TH17 differentiation, cholesterol biosynthesis and uptake programs are induced, whereas their metabolism and efflux programs are suppressed. These changes result in the accumulation of the cholesterol precursor, desmosterol, which functions as a potent endogenous RORγ agonist. Generation of cholesterol precursors is essential for TH17 differentiation as blocking cholesterol synthesis with chemical inhibitors at steps before the formation of active precursors reduces differentiation. Upon activation, metabolic changes also lead to production of specific sterol-sulfate conjugates that favor activation of RORγ over the TH17-inhibiting sterol receptor LXR. Thus, TH17 differentiation is orchestrated by coordinated sterol synthesis, mobilization and metabolism to selectively activate RORγ.
Assuntos
Diferenciação Celular/fisiologia , Colesterol/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Células Th17/citologia , Animais , Linfócitos T CD4-Positivos/citologia , Linhagem da Célula , Colesterol/biossíntese , Colesterol/química , Desmosterol/análogos & derivados , Desmosterol/química , Desmosterol/metabolismo , Interleucina-17/biossíntese , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células Sf9 , SpodopteraRESUMO
INTRODUCTION: Thermal imaging has been utilized, both preclinically and clinically, as a tool for assessing inflammation and arthritis. However, previous studies have employed large, relatively immobile devises to obtain the thermal signature of the tissue of interest. The present study describes the characterization of a hand-held thermal imaging device in a preclinical model of general inflammation and a model of rheumatoid arthritis (RA). METHODS: A hand-held ThermoView Ti30 portable thermal imager was utilized to detect the temporal changes in thermal signatures in rat model of carrageenan-induced paw edema (CFE) and a model of collagen-induced arthritis (CIA). In both in vivo models, the kinetics of the thermal changes were correlated to footpad swelling. In addition, the CFE model was utilized to examine the ability of this technology to delineate pharmacodynamic changes in thermal signature in response to the non-steroidal anti-inflammatory drug indomethacin (10 mg/kg; p.o.). RESULTS: Thermal analysis of rat paws in the CFE model demonstrated a significant increase in the mean temperature difference between the inflamed and contralateral control paw by two hours post-carrageenan (8.3 +/-0.5 degrees F). Indomethacin significantly decreased the mean temperature difference in treated animals as compared to vehicle. In the rat CIA model, increases in footpad temperature, as determined by thermal imaging, were significantly elevated by Day 11 and remained elevated throughout the duration of the 28 day protocol. Thermal changes were also found to precede increases in footpad edema (swelling). DISCUSSION: The results of this study demonstrate that the hand-held thermal imaging technology represents a rapid, highly-reproducible method by which to quantitate the degree of inflammation in rat models of general inflammation and rheumatoid arthritis. The ability to detect pharmacodynamic responses in paw temperature suggests that this technology may be a useful tool for the development of pharmacologic interventions for the treatment inflammation-related pathologies.