Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
ChemMedChem ; : e202400321, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087920

RESUMO

Hearing loss (HL) affects more than 5% of the global population, with projections indicating an impact of up to 50% on young individuals in the next years. HL treatments remain limited due to the inner ear's hermeticism. HL often involves inflammatory processes, underscoring the need for enhanced delivery of antiinflammatory agents to the inner ear. Our research focuses on the development of a directed therapy based on magnetic nanoparticles (MNPs). We previously synthesized biocompatible folic acid-coated iron oxide-core nanoparticles (MNPs@FA) as potential carriers for the anti-inflammatory Diclofenac (Dfc). This study aims to incorporate Dfc onto MNPs@FA to facilitate targeted drug delivery to the inner ear. Through optimizing the loading procedure, we achieved optimal loading capacity. Dfc release was studied in the simulated target fluid and the administration vehicle. Complete characterization is also shown. In vitro biocompatibility testing ensured the biosafety of the resulting formulation. Subsequent ex vivo targeting assays on murine cochleae validated the nanosystems' ability to penetrate the round window membrane, one of the main HL therapy barriers. These findings serve as validation before continuing to more complex in vivo studies. Together, the data here presented represent an advancement in addressing unmet medical needs in HL therapy.

2.
Acta bioquím. clín. latinoam ; 47(2): 399-406, abr.-jun. 2013. ilus, graf, tab
Artigo em Espanhol | LILACS | ID: lil-694562

RESUMO

Las nanopartículas magnéticas (MNP) complejadas con vectores génicos pueden, en presencia de un campo magnético externo, amplificar sustancialmente la eficiencia de la transferencia génica. Esta técnica, denominada magnetofección, es de gran interés en el campo de la terapia génica. En este estudio se caracterizó la mejora de transferencia génica en células gliales B92 utilizando complejos constituidos por diferentes proporciones de MNP asociadas a dos vectores adenovirales, a saber: los complejos entre las MNP denominadas PEI-Mag2 asociadas al adenovector RAd-GFP que expresa la proteína fluorescente verde GFP o al adenovector RAd-DsRed que expresa la proteína fluorescente roja DsRed2. Se demostró que para ambos vectores, a medida que la relación MNP/partícula viral física (PVF) va aumentando, la amplificación de la transfección también aumenta hasta que se llega a una relación MNP/PVF a partir de la cual el factor de amplificación alcanza un plateau. Se determinó que para el complejo PEI-Mag2/RAd-GFP la relación a partir de la cual se alcanza el plateau es de aproximadamente 0,5 fg Fe/PVF mientras que para el complejo PEI-Mag2/RAd-DsRed, esta relación corresponde a aproximadamente 71 fg Fe/PVF. Se concluye que los dos complejos magnéticos estudiados representan promisorias herramientas para mejorar la eficiencia en la terapia génica en células cerebrales.


It is known that certain types of magnetic nanoparticles (MNPs) complexed to gene vectors can, in the presence of an external magnetic field, greatly enhance gene transfer into cells. This technique, called magnetofection, is of great relevance to gene therapy. In the present study the ability of MNP/adenovector complexes to enhance gene transfer to B92 glial cells was assessed. Two complexes were assessed, namely PEI-Mag2/RAd-GFP and PEI-Mag2/RAd-DsRed, which are constituted by the MNP PEI-Mag2 complexed to the adenovector RAd-GFP (expressing the green fluorescent protein GFP) and RAd-DsRed (expressing the red fluorescent protein DsRed2), respectively. It was shown that for both vectors, an increase in the ratio MNP/PVP (physical viral particle) is paralleled by an increase in transduction efficiency, up to a certain threshold value at which an efficiency plateau is reached. This threshold value was 0.5 fg Fe/PVP for the RAd-GFP complex and about 71 fg Fe/PVP for the RAd-DsRed complex. It can be concluded that both magnetic complexes assessed in this study represent promising tools for enhancing the efficiency of gene therapy in brain cells.


As nanopartículas magnéticas (MNPs) complexadas com vetores de genes podem, em presença de um campo magnético externo, aumentar consideravelmente a eficiência da transferência gênica. Esta técnica, chamada magnetofecção, é de grande relevância para a terapia genética. No presente estudo, foi caracterizada a melhoria de transferência de genes em células gliais B92 utilizando complexos constituídos por diferentes proporções de MNP associadas a dois vetores adenovirais, a saber: os complexos entre as MNP denominadas PEI-Mag2 associadas ao adenovetor RAd-GFP que expressa a proteína fluorescente verde GFP ou ao adenovetor RAd-DsRed que expressa a proteína fluorescente vermelha DsRed2. Foi demonstrado que para ambos os vetores, enquanto a relação MNP/partícula viral física (PVF) vai aumentando, a amplificação da transfecção também aumenta até que se chega a uma relação MNP/PVF a partir da qual o fator de amplificação alcança um limiar. Determinou-se que para o complexo PEI-Mag2/RAd-GFP a relação a partir da qual se atinge o limiar é de aproximadamente 0,5 fg Fe/PVF ao passo que para o complexo PEI-Mag2/RAd-DsRed, esta relação corresponde a aproximadamente 71 fg Fe/PVF. Conclui-se que os dois complexos magnéticos estudados representam promissoras ferramentas para melhorar a eficiência na terapia de genes em células cerebrais.


Assuntos
Animais , Ratos , Glioma/líquido cefalorraquidiano , Nanopartículas de Magnetita , Neoplasias/líquido cefalorraquidiano , Técnicas de Transferência de Genes , Sistema Nervoso , Neuroglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA