Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927066

RESUMO

The cell cycle and the transcriptome dynamics of yeast exposed to extracellular self-DNA during an aerobic batch culture on glucose have been investigated using cytofluorimetric and RNA-seq analyses. In parallel, the same study was conducted on yeast cells growing in the presence of (heterologous) nonself-DNA. The self-DNA treatment determined a reduction in the growth rate and a major elongation of the diauxic lag phase, as well as a significant delay in the achievement of the stationary phase. This was associated with significant changes in the cell cycle dynamics, with slower exit from the G0 phase, followed by an increased level of cell percentage in the S phase, during the cultivation. Comparatively, the exposure to heterologous DNA did not affect the growth curve and the cell cycle dynamics. The transcriptomic analysis showed that self-DNA exposure produced a generalized downregulation of transmembrane transport and an upregulation of genes associated with sulfur compounds and the pentose phosphate pathway. Instead, in the case of the nonself treatment, a clear response to nutrient deprivation was detected. Overall, the presented findings represent further insights into the complex functional mechanisms of self-DNA inhibition.


Assuntos
Ciclo Celular , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ciclo Celular/genética , Técnicas de Cultura Celular por Lotes , Regulação Fúngica da Expressão Gênica , DNA/metabolismo , Glucose/metabolismo
2.
Front Cell Infect Microbiol ; 14: 1367359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660488

RESUMO

Cryptosporidium parvum is a common cause of a zoonotic disease and a main cause of diarrhea in newborns. Effective drugs or vaccines are still lacking. Oocyst is the infective form of the parasite; after its ingestion, the oocyst excysts and releases four sporozoites into the host intestine that rapidly attack the enterocytes. The membrane protein CpRom1 is a large rhomboid protease that is expressed by sporozoites and recognized as antigen by the host immune system. In this study, we observed the release of CpRom1 with extracellular vesicles (EVs) that was not previously described. To investigate this phenomenon, we isolated and resolved EVs from the excystation medium by differential ultracentrifugation. Fluorescence flow cytometry and transmission electron microscopy (TEM) experiments identified two types of sporozoite-derived vesicles: large extracellular vesicles (LEVs) and small extracellular vesicles (SEVs). Nanoparticle tracking analysis (NTA) revealed mode diameter of 181 nm for LEVs and 105 nm for SEVs, respectively. Immunodetection experiments proved the presence of CpRom1 and the Golgi protein CpGRASP in LEVs, while immune-electron microscopy trials demonstrated the localization of CpRom1 on the LEVs surface. TEM and scanning electron microscopy (SEM) showed that LEVs were generated by means of the budding of the outer membrane of sporozoites; conversely, the origin of SEVs remained uncertain. Distinct protein compositions were observed between LEVs and SEVs as evidenced by their corresponding electrophoretic profiles. Indeed, a dedicated proteomic analysis identified 5 and 16 proteins unique for LEVs and SEVs, respectively. Overall, 60 proteins were identified in the proteome of both types of vesicles and most of these proteins (48 in number) were already identified in the molecular cargo of extracellular vesicles from other organisms. Noteworthy, we identified 12 proteins unique to Cryptosporidium spp. and this last group included the immunodominant parasite antigen glycoprotein GP60, which is one of the most abundant proteins in both LEVs and SEVs.


Assuntos
Cryptosporidium parvum , Vesículas Extracelulares , Proteínas de Protozoários , Esporozoítos , Vesículas Extracelulares/metabolismo , Cryptosporidium parvum/metabolismo , Esporozoítos/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/análise , Microscopia Eletrônica de Transmissão , Animais , Criptosporidiose/parasitologia , Humanos , Proteoma/análise , Proteômica , Citometria de Fluxo
3.
J Leukoc Biol ; 115(6): 1053-1069, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38242866

RESUMO

Tuberculosis is one of the deadliest infectious diseases worldwide. Mycobacterium tuberculosis has developed strategies not only to evade host immunity but also to manipulate it for its survival. We investigated whether Mycobacterium tuberculosis exploited the immunogenicity of Ag85B, one of its major secretory proteins, to redirect host antituberculosis immunity to its advantage. We found that administration of Ag85B protein to mice vaccinated with Bacillus Calmette-Guérin impaired the protection elicited by vaccination, causing a more severe infection when mice were challenged with Mycobacterium tuberculosis. Ag85B administration reduced Bacillus Calmette-Guérin-induced CD4 T-cell activation and IFN-γ, CCL-4, and IL-22 production in response to Mycobacterium tuberculosis-infected cells. On the other hand, it promoted robust Ag85B-responsive IFN-γ-producing CD4 T cells, expansion of a subset of IFN-γ/IL-10-producing CD4+FOXP3+Treg cells, differential activation of IL-17/IL-22 responses, and activation of regulatory and exhaustion pathways, including programmed death ligand 1 expression on macrophages. All this resulted in impaired intracellular Mycobacterium tuberculosis growth control by systemic immunity, both before and after the Mycobacterium tuberculosis challenge. Interestingly, Mycobacterium tuberculosis infection itself generated Ag85B-reactive inflammatory immune cells incapable of clearing Mycobacterium tuberculosis in both unvaccinated and Bacillus Calmette-Guérin-vaccinated mice. Our data suggest that Mycobacterium tuberculosis can exploit the strong immunogenicity of Ag85B to promote its own survival and spread. Since Ag85B is normally secreted by replicating bacteria and is commonly found in the lungs of the Mycobacterium tuberculosis-infected host, our findings may advance the understanding on the mechanisms of Mycobacterium tuberculosis pathogenesis and immune evasion.


Assuntos
Aciltransferases , Antígenos de Bactérias , Vacina BCG , Proteínas de Bactérias , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis , Tuberculose , Animais , Antígenos de Bactérias/imunologia , Mycobacterium tuberculosis/imunologia , Aciltransferases/imunologia , Vacina BCG/imunologia , Camundongos , Tuberculose/imunologia , Tuberculose/microbiologia , Proteínas de Bactérias/imunologia , Feminino , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Viabilidade Microbiana
4.
Brain Behav Immun ; 115: 89-100, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793488

RESUMO

To clarify the role of gut mucosal immunity in ASD, we evaluated, in the early-life immune activation (EIA) mouse model, the effects of administration of a monoclonal antibody directed against the integrin alpha4 beta7 (α4ß7 mAb), blocking the leukocyte homing into the gut mucosa. EIA is a double-hit variant of the maternal immune-activation (MIA) model, including both prenatal (Poly I:C) and postnatal (LPS) immune challenges. In C57BL6/J EIA male adult offspring mice, IL-1ß and IL-17A mRNA colonic tissue content increased when compared with controls. Cytofluorimetric analyses of lymphocytes isolated from mesenteric lymph-nodes (MLN) and spleens of EIA mice show increased percentage of total and CD4+α4ß7+, unstimulated and stimulated IL-17A+ and stimulated IFN-γ+ lymphocytes in MLN and CD4+α4ß7+ unstimulated and stimulated IL-17A+ and stimulated IFN-γ+ lymphocytes in the spleen. Treatment with anti-α4ß7 mAb in EIA male mice was associated with colonic tissue IL-1ß, and IL-17A mRNA content and percentage of CD4+ IL-17A+ and IFN-γ+ lymphocytes in MLN and spleens comparable to control mice. The anti-α4ß7 mAb treatment rescue social novelty deficit showed in the three-chamber test by EIA male mice. Increased levels of IL-6 and IL-1ß and decreased CD68 and TGF-ß mRNAs were also observed in hippocampus and prefrontal cortex of EIA male mice together with a reduction of BDNF mRNA levels in all brain regions examined. Anti-α4ß7 mAb treatment restored the expression of BDNF, TGF-ß and CD68 in hippocampus and prefrontal cortex. Improvement of the gut inflammatory status, obtained by a pharmacological agent acting exclusively at gut level, ameliorates some ASD behavioral features and the neuroinflammatory status. Data provide the first preclinical indication for a therapeutic strategy against gut-immune activation in ASD subjects with peripheral increase of gut-derived (α4ß7+) lymphocytes expressing IL-17A.


Assuntos
Transtorno do Espectro Autista , Interleucina-17 , Humanos , Adulto , Gravidez , Feminino , Masculino , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo , Integrinas/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Fator de Crescimento Transformador beta , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA