Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Protoc ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755447

RESUMO

Making research data findable, accessible, interoperable and reusable (FAIR) is typically hampered by a lack of skills in technical aspects of data management by data generators and a lack of resources. We developed a Template Wizard for researchers to easily create templates suitable for consistently capturing data and metadata from their experiments. The templates are easy to use and enable the compilation of machine-readable metadata to accompany data generation and align them to existing community standards and databases, such as eNanoMapper, streamlining the adoption of the FAIR principles. These templates are citable objects and are available as online tools. The Template Wizard is designed to be user friendly and facilitates using and reusing existing templates for new projects or project extensions. The wizard is accompanied by an online template validator, which allows self-evaluation of the template (to ensure mapping to the data schema and machine readability of the captured data) and transformation by an open-source parser into machine-readable formats, compliant with the FAIR principles. The templates are based on extensive collective experience in nanosafety data collection and include over 60 harmonized data entry templates for physicochemical characterization and hazard assessment (cell viability, genotoxicity, environmental organism dose-response tests, omics), as well as exposure and release studies. The templates are generalizable across fields and have already been extended and adapted for microplastics and advanced materials research. The harmonized templates improve the reliability of interlaboratory comparisons, data reuse and meta-analyses and can facilitate the safety evaluation and regulation process for (nano) materials.

2.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770432

RESUMO

The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.

3.
NanoImpact ; 25: 100385, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35559891

RESUMO

Expectations for safer and sustainable chemicals and products are growing to comply with the United Nations and European strategies for sustainability. The application of Safe(r) by Design (SbD) in nanotechnology implies an iterative process where functionality, human health and safety, environmental and economic impact and cost are assessed and balanced as early as possible in the innovation process and updated at each step. The EU H2020 NanoReg2 project was the first European project to implement SbD in six companies handling and/or manufacturing nanomaterials (NMs) and nano-enabled products (NEP). The results from this experience have been used to develop these guidelines on the practical application of SbD. The SbD approach foresees the identification, estimation, and reduction of human and environmental risks as early as possible in the development of a NM or NEP, and it is based on three pillars: (i) safer NMs and NEP; (ii) safer use and end of life and (iii) safer industrial production. The presented guidelines include a set of information and tools that will help deciding at each step of the innovation process whether to continue, apply SbD measures or carry out further tests to reduce uncertainty. It does not intend to be a prescriptive protocol where all suggested steps have to be followed to achieve a SbD NM/NEP or process. Rather, the guidelines are designed to identify risks at an early state and information to be considered to identify those risks. Each company adapts the approach to its specific needs and circumstances as company decisions influence the way forward.


Assuntos
Nanoestruturas , Nanotecnologia , Humanos , Indústrias , Nanoestruturas/efeitos adversos , Incerteza
5.
Indoor Air ; 29(5): 803-816, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31206776

RESUMO

A particle exposure experiment inside a large climate-controlled chamber was conducted. Data on spatial and temporal distribution of nanoscale and fine aerosols in the range of mobility diameters 8-600 nm were collected with high resolution, for sodium chloride, fluorescein sodium, and silica particles. Exposure scenarios studied included constant and intermittent source emissions, different aggregation conditions, high (10 h-1 ) and low (3.5 h-1 ) air exchange rates (AERs) corresponding to chamber Reynolds number, respectively, equal to 1 × 105 and 3 × 104 . Results are presented and analyzed to highlight the main determinants of exposure and to determine whether the assumptions underlying two-box models hold under various scenarios. The main determinants of exposure found were the source generation rate and the ventilation rate. The effect of particles nature was indiscernible, and the decrease of airborne total number concentrations attributable to surface deposition was estimated lower than 2% when the source was active. A near-field/far-field structure of aerosol concentration was always observed for the AER = 10 h-1 but for AER = 3.5 h-1 , a single-field structure was found. The particle size distribution was always homogeneous in space but a general shift of particle diameter (-8% to +16%) was observed between scenarios in correlation with the AER and with the source position, presumably largely attributable to aggregation.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Humanos , Modelos Teóricos , Nanopartículas , Tamanho da Partícula , Análise Espaço-Temporal , Ventilação
6.
Nanotoxicology ; 12(7): 747-765, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29893192

RESUMO

The use of nano-scale copper oxide (CuO) and basic copper carbonate (Cu2(OH)2CO3) in both ionic and micronized wood preservatives has raised concerns about the potential of these substances to cause adverse humans health effects. To address these concerns, we performed quantitative (probabilistic) human health risk assessment (HHRA) along the lifecycles of these formulations used in antibacterial and antifungal wood coatings and impregnations by means of the EU FP7 SUN project's Decision Support System (SUNDS, www.sunds.gd). The results from the risk analysis revealed inhalation risks from CuO in exposure scenarios involving workers handling dry powders and performing sanding operations as well as potential ingestion risks for children exposed to nano Cu2(OH)2CO3 in a scenario involving hand-to-mouth transfer of the substance released from impregnated wood. There are, however, substantial uncertainties in these results, so some of the identified risks may stem from the safety margin of extrapolation to fill data gaps and might be resolved by additional testing. Our stochastic approach successfully communicated the contribution of different sources of uncertainty in the risk assessment. The main source of uncertainty was the extrapolation from short to long-term exposure, which was necessary due to the lack of (sub)chronic in vivo studies with CuO and Cu2(OH)2CO3. Considerable uncertainties also stemmed from the use of default inter- and intra-species extrapolation factors.


Assuntos
Anti-Infecciosos/toxicidade , Carbonatos/toxicidade , Cobre/toxicidade , Exposição Ambiental/efeitos adversos , Nanopartículas/toxicidade , Madeira/microbiologia , Animais , Anti-Infecciosos/análise , Carbonatos/análise , Criança , Cobre/análise , Relação Dose-Resposta a Droga , Exposição Ambiental/análise , Humanos , Masculino , Nanopartículas/análise , Ratos , Medição de Risco , Fatores de Tempo
7.
Risk Anal ; 38(7): 1321-1331, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29240986

RESUMO

Societies worldwide are investing considerable resources into the safe development and use of nanomaterials. Although each of these protective efforts is crucial for governing the risks of nanomaterials, they are insufficient in isolation. What is missing is a more integrative governance approach that goes beyond legislation. Development of this approach must be evidence based and involve key stakeholders to ensure acceptance by end users. The challenge is to develop a framework that coordinates the variety of actors involved in nanotechnology and civil society to facilitate consideration of the complex issues that occur in this rapidly evolving research and development area. Here, we propose three sets of essential elements required to generate an effective risk governance framework for nanomaterials. (1) Advanced tools to facilitate risk-based decision making, including an assessment of the needs of users regarding risk assessment, mitigation, and transfer. (2) An integrated model of predicted human behavior and decision making concerning nanomaterial risks. (3) Legal and other (nano-specific and general) regulatory requirements to ensure compliance and to stimulate proactive approaches to safety. The implementation of such an approach should facilitate and motivate good practice for the various stakeholders to allow the safe and sustainable future development of nanotechnology.

8.
J Occup Environ Hyg ; 13(12): 936-949, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27314531

RESUMO

Control banding (CB) is a useful approach to evaluate and control the risk of exposure to nanomaterials (NM) due to uncertainty surrounding their toxicity and challenges associated with their measurement. Four CB tools specifically developed for NMs (NanoSafer, Stoffenmanager-Nano, NanoTool, and the Precautionary matrix) have been evaluated for their changes to differences in hazard and exposure input data. The hazard and exposure classification were also compared with experimental data. The tools provided different hazard and emission/exposure outputs when compared with each other and with experimental data. For some of the tools the information required to estimate the hazard is not always available in the Safety Data Sheet and it requires expert judgement. The tools have the potential to be valuable starting points to assess areas of high priority, although outputs should be interpreted with care. Further work should be done to improve their estimates, especially the inclusion of modifiers that account for the effectiveness of the ventilation and the effect of high temperatures during the process.


Assuntos
Substâncias Perigosas/classificação , Nanoestruturas/efeitos adversos , Exposição Ocupacional/prevenção & controle , Medição de Risco/métodos , Substâncias Perigosas/efeitos adversos , Humanos , Exposição por Inalação/prevenção & controle , Gestão de Riscos/métodos , Ventilação/métodos
9.
Int J Environ Res Public Health ; 12(12): 15007-21, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26633430

RESUMO

An engineered nanomaterial (ENM) may actually consist of a population of primary particles, aggregates and agglomerates of various sizes. Furthermore, their physico-chemical characteristics may change during the various life-cycle stages. It will probably not be feasible to test all varieties of all ENMs for possible health and environmental risks. There is therefore a need to further develop the approaches for risk assessment of ENMs. Within the EU FP7 project Managing Risks of Nanoparticles (MARINA) a two-phase risk assessment strategy has been developed. In Phase 1 (Problem framing) a base set of information is considered, relevant exposure scenarios (RESs) are identified and the scope for Phase 2 (Risk assessment) is established. The relevance of an RES is indicated by information on exposure, fate/kinetics and/or hazard; these three domains are included as separate pillars that contain specific tools. Phase 2 consists of an iterative process of risk characterization, identification of data needs and integrated collection and evaluation of data on the three domains, until sufficient information is obtained to conclude on possible risks in a RES. Only data are generated that are considered to be needed for the purpose of risk assessment. A fourth pillar, risk characterization, is defined and it contains risk assessment tools. This strategy describes a flexible and efficient approach for data collection and risk assessment which is essential to ensure safety of ENMs. Further developments are needed to provide guidance and make the MARINA Risk Assessment Strategy operational. Case studies will be needed to refine the strategy.


Assuntos
Exposição Ambiental/efeitos adversos , Nanopartículas/efeitos adversos , Nanoestruturas/efeitos adversos , Medição de Risco/métodos , Gestão de Riscos/métodos , Coleta de Dados , Humanos , Modelos Teóricos
10.
Environ Health ; 12: 50, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23782423

RESUMO

BACKGROUND: This study estimates the potential population health burden from exposure to combustion-derived particulate air pollution in domestic settings in Ireland and Scotland. METHODS: The study focused on solid fuel combustion used for heating and the use of gas for cooking. PM2.5 (particulate matter with an aerodynamic diameter < 2.5 µm) was used as the pollutant mixture indicator. Measured PM2.5 concentrations in homes using solid fuels were adjusted for other sources of PM2.5 by subtracting PM2.5 concentrations in homes using gas for cooking but not solid fuel heating. Health burden was estimated for exposure indoors 6 pm - midnight, or all day (24-hour), by combining estimated attributable annual PM2.5 exposures with (i) selected epidemiological functions linking PM2.5 with mortality and morbidity (involving some re-scaling from PM10 to PM2.5, and adjustments 'translating' from concentrations to exposures) and (ii) on the current population exposed and background rates of morbidity and mortality. RESULTS: PM2.5 concentrations in coal and wood burning homes were similar to homes using gas for cooking, used here as a baseline (mean 24-hr PM2.5 concentrations 8.6 µg/m3) and so health impacts were not calculated. Concentrations of PM2.5 in homes using peat were higher (24-hr mean 15.6 µg/m3); however, health impacts were calculated for the exposed population in Ireland only; the proportion exposed in Scotland was very small. The assessment for winter evening exposure (estimated annual average increase of 2.11 µg/m3 over baseline) estimated 21 additional annual cases of all-cause mortality, 55 of chronic bronchitis, and 30,100 and 38,000 annual lower respiratory symptom days (including cough) and restricted activity days respectively. CONCLUSION: New methods for estimating the potential health burden of combustion-generated pollution from solid fuels in Irish and Scottish homes are provided. The methodology involves several approximations and uncertainties but is consistent with a wider movement towards quantifying risks in PM2.5 irrespective of source. Results show an effect of indoor smoke from using peat (but not wood or coal) for heating and cooking; but they do not suggest that this is a major public health issue.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar em Ambientes Fechados/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Monitoramento Ambiental/métodos , Exposição por Inalação , Material Particulado/toxicidade , Doenças Respiratórias/epidemiologia , Adolescente , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/economia , Criança , Culinária , Efeitos Psicossociais da Doença , Política de Saúde , Calefação , Humanos , Irlanda/epidemiologia , Pessoa de Meia-Idade , Tamanho da Partícula , Material Particulado/análise , Doenças Respiratórias/induzido quimicamente , Doenças Respiratórias/economia , Medição de Risco , Escócia/epidemiologia , Estações do Ano , Fatores de Tempo
11.
Ann Occup Hyg ; 56(1): 61-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21926068

RESUMO

OBJECTIVES: There are no recognized analytical methods for measuring oil mist and vapours arising from drilling fluids used in offshore petroleum drilling industry. To inform the future development of improved methods of analysis for oil mist and vapours this study assessed the inter- and intra-laboratory variability in oil mist and vapour analysis. In addition, sample losses during transportation and storage were assessed. METHODS: Replicate samples for oil mist and vapour were collected using the 37-mm Millipore closed cassette and charcoal tube assembly. Sampling was conducted in a simulated shale shaker room, similar to that found offshore for processing drilling fluids. Samples were analysed at two different laboratories, one in Norway and one in the UK. Oil mist samples were analysed using Fourier transform infrared spectroscopy (FTIR), while oil vapour samples were analysed by gas chromatography (GC). RESULTS: The comparison of replicate samples showed substantial within- and between-laboratory variability in reported oil mist concentrations. The variability in oil vapour results was considerably reduced compared to oil mist, provided that a common method of calibration and quantification was adopted. The study also showed that losses can occur during transportation and storage of samples. CONCLUSIONS: There is a need to develop a harmonized method for the quantification of oil mist on filter and oil vapour on charcoal supported by a suitable proficiency testing scheme for laboratories involved in the analysis of occupational hygiene samples for the petroleum industry. The uncertainties in oil mist and vapour measurement have substantial implications in relation to compliance with occupational exposure limits and also in the reliability of any exposure-response information reported in epidemiological studies.


Assuntos
Poluentes Ocupacionais do Ar/análise , Indústrias Extrativas e de Processamento , Óleos Industriais/análise , Aerossóis , Poluentes Ocupacionais do Ar/química , Cromatografia Gasosa , Monitoramento Ambiental/métodos , Análise de Fourier , Humanos , Espectrofotometria Infravermelho
12.
J Environ Monit ; 13(6): 1841-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21528134

RESUMO

The aim of this study was to compare the performance of the TSI Aerodynamic Particle Sizer (APS) and the TSI portable photometer SidePak to measure airborne oil mist particulate matter (PM) with aerodynamic diameters below 10 µm, 2.5 µm and 1 µm (PM(10), PM(2.5) and PM(1)). Three SidePaks each fitted with either a PM(10), PM(2.5) or a PM(1) impactor and an APS were run side by side in a controlled chamber. Oil mist from two different mineral oils and two different drilling fluid systems commonly used in offshore drilling technologies were generated using a nebulizer. Compared to the APS, the SidePaks overestimated the concentration of PM(10) and PM(2.5) by one order of magnitude and PM(1) concentrations by two orders of magnitude after exposure to oil mist for 3.3-6.5 min at concentrations ranging from 0.003 to 18.1 mg m(-3) for PM(10), 0.002 to 3.96 mg m(-3) for PM(2.5) and 0.001 to 0.418 mg m(-3) for PM(1) (as measured by the APS). In a second experiment a SidePak monitor previously exposed to oil mist overestimated PM(10) concentrations by 27% compared to measurements from another SidePak never exposed to oil mist. This could be a result of condensation of oil mist droplets in the optical system of the SidePak. The SidePak is a very useful instrument for personal monitoring in occupational hygiene due to its light weight and quiet pump. However, it may not be suitable for the measurement of particle concentrations from oil mist.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Exposição por Inalação/análise , Humanos , Exposição Ocupacional/análise , Tamanho da Partícula
13.
Ann Occup Hyg ; 55(3): 230-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21257742

RESUMO

Although personal respiratory protection is widely recognized as having a lower priority than reduction of any risk at source, respiratory protective equipment (RPE) is a major part of risk management for many employers. We have identified the key elements of what constitutes an effective risk control programme involving RPE, through a 3-fold approach involving (i) a review of the published scientific literature, (ii) exploring the issue through >40 years of research publications from the Institute of Occupational Medicine (IOM) (in which the ergonomics of personal protection equipment has been a significant thread), and (iii) a series of interviews and discussions with IOM and Health and Safety Executive staff with experience in the testing, prescription, or use of RPE. We have used the findings to formulate a series of recommendations for the constituents of an effective RPE programme. The role of management is paramount in recognizing the need for and providing appropriate RPE, which is both technically and ergonomically effective. Only then does any focus on the role of the employee, in wearing the RPE correctly at the appropriate times, becomes viable.


Assuntos
Exposição Ocupacional/prevenção & controle , Saúde Ocupacional , Dispositivos de Proteção Respiratória , Doenças Respiratórias/prevenção & controle , Humanos , Doenças Profissionais/prevenção & controle , Desenvolvimento de Programas , Gestão de Riscos/organização & administração , Local de Trabalho/normas
14.
Ann Occup Hyg ; 55(4): 347-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21248050

RESUMO

Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40°C against the Norwegian oil vapour OEL is questioned since these base oils are very similar to white spirit. To reduce exposures, relevant technical control measures in this area are to cool the drilling fluid <50°C before it enters the shale shaker units, enclose shale shakers and related equipment, in addition to careful consideration of which fluid system to use.


Assuntos
Poluentes Ocupacionais do Ar/análise , Indústrias Extrativas e de Processamento , Exposição Ocupacional/análise , Petróleo/análise , Poluentes Ocupacionais do Ar/química , Monitoramento Ambiental , Humanos , Temperatura , Compostos Orgânicos Voláteis/análise , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA