Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiome ; 12(1): 97, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790062

RESUMO

BACKGROUND: Antibiotics and microplastics are two major aquatic pollutants that have been associated to antibiotic resistance selection in the environment and are considered a risk to human health. However, little is known about the interaction of these pollutants at environmental concentrations and the response of the microbial communities in the plastisphere to sub-lethal antibiotic pollution. Here, we describe the bacterial dynamics underlying this response in surface water bacteria at the community, resistome and mobilome level using a combination of methods (next-generation sequencing and qPCR), sequencing targets (16S rRNA gene, pre-clinical and clinical class 1 integron cassettes and metagenomes), technologies (short and long read sequencing), and assembly approaches (non-assembled reads, genome assembly, bacteriophage and plasmid assembly). RESULTS: Our results show a shift in the microbial community response to antibiotics in the plastisphere microbiome compared to surface water communities and describe the bacterial subpopulations that respond differently to antibiotic and microplastic pollution. The plastisphere showed an increased tolerance to antibiotics and selected different antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs). Several metagenome assembled genomes (MAGs) derived from the antibiotic-exposed plastisphere contained ARGs, virulence factors, and genes involved in plasmid conjugation. These include Comamonas, Chryseobacterium, the opportunistic pathogen Stenotrophomonas maltophilia, and other MAGs belonging to genera that have been associated to human infections, such as Achromobacter. The abundance of the integron-associated ciprofloxacin resistance gene aac(6')-Ib-cr increased under ciprofloxacin exposure in both freshwater microbial communities and in the plastisphere. Regarding the antibiotic mobilome, although no significant changes in ARG load in class 1 integrons and plasmids were observed in polluted samples, we identified three ARG-containing viral contigs that were integrated into MAGs as prophages. CONCLUSIONS: This study illustrates how the selective nature of the plastisphere influences bacterial response to antibiotics at sub-lethal selective pressure. The microbial changes identified here help define the selective role of the plastisphere and its impact on the maintenance of environmental antibiotic resistance in combination with other anthropogenic pollutants. This research highlights the need to evaluate the impact of aquatic pollutants in environmental microbial communities using complex scenarios with combined stresses. Video Abstract.


Assuntos
Antibacterianos , Bactérias , Microbiota , RNA Ribossômico 16S , Antibacterianos/farmacologia , Bactérias/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Microbiota/efeitos dos fármacos , Microbiota/genética , RNA Ribossômico 16S/genética , Integrons/genética , Farmacorresistência Bacteriana/genética , Poluentes Químicos da Água , Microplásticos , Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Plasmídeos/genética , Microbiologia da Água , Resistência Microbiana a Medicamentos/genética
2.
Innovation (Camb) ; 5(4): 100612, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38756954

RESUMO

Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention. This review identifies the sources and impacts of emerging contaminants on planetary health, emphasizing the importance of adopting a One Health approach. Strategies for monitoring and addressing these pollutants are discussed, underscoring the need for robust and socially equitable environmental policies at both regional and international levels. Urgent actions are needed to transition toward sustainable pollution management practices to safeguard our planet for future generations.

3.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310875

RESUMO

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Assuntos
Antibacterianos , Genes Bacterianos , Animais , Humanos , Antibacterianos/farmacologia , RNA Ribossômico 16S/genética , Resistência Microbiana a Medicamentos/genética , Metagenômica/métodos
4.
Sci Rep ; 13(1): 8612, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244902

RESUMO

Antibiotics at sub-inhibitory concentrations are often found in the environment. Here they could impose selective pressure on bacteria, leading to the selection and dissemination of antibiotic resistance, despite being under the inhibitory threshold. The goal of this study was to evaluate the effects of sub-inhibitory concentrations of gentamicin on environmental class 1 integron cassettes in natural river microbial communities. Gentamicin at sub-inhibitory concentrations promoted the integration and selection of gentamicin resistance genes (GmRG) in class 1 integrons after only a one-day exposure. Therefore, sub-inhibitory concentrations of gentamicin induced integron rearrangements, increasing the mobilization potential of gentamicin resistance genes and potentially increasing their dissemination in the environment. This study demonstrates the effects of antibiotics at sub-inhibitory concentrations in the environment and supports concerns about antibiotics as emerging pollutants.


Assuntos
Gentamicinas , Integrons , Integrons/genética , Gentamicinas/farmacologia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Farmacorresistência Bacteriana/genética
5.
Bioelectrochemistry ; 153: 108460, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37224603

RESUMO

Understanding exoelectrogenic bacteria mechanisms and their interactions in complex biofilm is critical for the development of microbial fuel cells (MFCs). In this article, assumptions concerning the benefits of the complex sediment microbial community for electricity production were explored with both the complex microbial community and isolates identified as Shewanella. Analysis of the microbial community revealed a strong influence of the sediment community on anodes and electrolytes compared to that of only water. Moreover, while Pelobacteraceae-related genera were dominant in our MFCs instead of Desulfuromonas and Geobacter as usually reported, the electroactive Shewanella algae and Shewanella fodinae were isolated and cultivated from the anodic biofilm. S. fodinae, described for the first time as an electroactive bacterium to the best of our knowledge, led to a maximal current density of 3.6 A/m2 set as 0.3 V/SCE in a three-electrode set-up fed with lactate. S. algae, in a complex medium containing several available substrates, showed several preferential oxidative behaviors including a diauxic behavior. In pure culture and under our conditions, S. fodinae and S. algae were not able to use acetate as a sole electron donor. However, their presence in our acetate-fed MFCs and the adaptive behavior of S. algae hint a syntrophic interaction between the bacteria to optimize the use of the substrate in a complex environment.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Shewanella , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Biofilmes , Eletrodos , Acetatos
6.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37073121

RESUMO

Polar regions are increasingly exposed to ultraviolet light due to ozone depletion. Snowpacks contain photochemically active particles that, when irradiated, can lead to the production and accumulation of reactive species that can induce oxidative stress on snow microorganisms. This could generate a selective pressure on snowpack bacteria. In this study, snow microcosms were buried in a snowpack at Ny-Ålesund (Svalbard), either exposed to solar irradiation or incubated in the dark for 10 days, and the bacterial response to solar irradiation was evaluated in situ using a metagenomics approach. Solar irradiation induced a significant decrease in bacterial abundance and richness. Genes involved in glutathione synthesis, sulphur metabolism, and multidrug efflux were significantly enriched in the light, whereas genes related to cell wall assembly and nutrient uptake were more abundant in the dark. This is the first study demonstrating the response of snow bacterial communities to solar irradiation in situ and providing insights into the mechanisms involved. Our research shows that polar sun irradiation is sufficiently intense to impose a selective pressure on snow bacteria and supports the concern that increased ultraviolet exposure due to anthropogenic activities and climatic change could drive critical changes in the structure and functioning of snow bacterial communities.


Assuntos
Clima Frio , Neve , Neve/microbiologia , Bactérias/genética , Svalbard
7.
Front Microbiol ; 13: 918622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783390

RESUMO

Winter tourism can generate environmental pollution and affect microbial ecology in mountain ecosystems. This could stimulate the development of antibiotic resistance in snow and its dissemination through the atmosphere and through snow melting. Despite these potential impacts, the effect of winter tourism on the snow antibiotic resistome remains to be elucidated. In this study, snow samples subjected to different levels of anthropogenic activities and surrounding forest were obtained from the Sudety Mountains in Poland to evaluate the impact of winter tourism on snow bacteria using a metagenomic approach. Bacterial community composition was determined by the sequencing of the V3-V4 hypervariable region of the 16S rRNA gene and the composition of the antibiotic resistome was explored by metagenomic sequencing. Whereas environmental factors were the main drivers of bacterial community and antibiotic resistome composition in snow, winter tourism affected resistome composition in sites with similar environmental conditions. Several antibiotic resistance genes (ARGs) showed a higher abundance in sites subjected to human activities. This is the first study to show that anthropogenic activities may influence the antibiotic resistome in alpine snow. Our results highlight the need to survey antibiotic resistance development in anthropogenically polluted sites.

8.
Biomolecules ; 12(3)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35327556

RESUMO

Although Next-Generation Sequencing techniques have increased our access to the soil microbiome, each step of soil metagenomics presents inherent biases that prevent the accurate definition of the soil microbiome and its ecosystem function. In this study, we compared the effects of DNA extraction and sequencing depth on bacterial richness discovery from two soil samples. Four DNA extraction methods were used, and sequencing duplicates were generated for each DNA sample. The V3-V4 region of the 16S rRNA gene was sequenced to determine the taxonomical richness measured by each method at the amplicon sequence variant (ASV) level. Both the overall functional richness and antibiotic resistance gene (ARG) richness were evaluated by metagenomics sequencing. Despite variable DNA extraction methods, sequencing depth had a greater influence on bacterial richness discovery at both the taxonomical and functional levels. Sequencing duplicates from the same sample provided access to different portions of bacterial richness, and this was related to differences in the sequencing depth. Thus, the sequencing depth introduced biases in the comparison of DNA extraction methods. An optimisation of the soil metagenomics workflow is needed in order to sequence at a sufficient and equal depth. This would improve the accuracy of metagenomic comparisons and soil microbiome profiles.


Assuntos
Microbiota , Solo , Bactérias/genética , DNA , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
9.
ISME Commun ; 2(1): 29, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37938295

RESUMO

Antibiotics released into the environment at low (sub-inhibitory) concentrations could select for antibiotic resistance that might disseminate to the human microbiome. In this case, low-level anthropogenic sources of antibiotics would have a significant impact on human health risk. In order to provide data necessary for the evaluation of this risk, we implemented river water microcosms at both sub-inhibitory and inhibitory concentrations of gentamicin as determined previously based on bacterial growth in enriched media. Using metagenomic sequencing and qPCR/RT-qPCR, we assessed the effects of gentamicin on water bacterial communities and their resistome. A change in the composition of total and active communities, as well as a gentamicin resistance gene selection identified via mobile genetic elements, was observed during a two-day exposure. We demonstrated the effects of sub-inhibitory concentrations of gentamicin on bacterial communities and their associated resistome in microcosms (simulating in situ conditions). In addition, we established relationships between antibiotic dose and the magnitude of the community response in the environment. The scope of resistance selection under sub-inhibitory concentrations of antibiotics and the mechanisms underlying this process might provide the basis for understanding resistance dispersion and associated risks in relatively low impacted ecosystems.

10.
J Chromatogr A ; 1651: 462133, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34087719

RESUMO

Aminoglycosides are mostly used as veterinary antibiotics. In France, their consumption accounts for about 10% of all prescribed animal medicine. Due to their high polarity nature (log Kow < -3), they require chromatographic separation by hydrophilic interaction liquid chromatography or ion-pairing chromatography. This study presents the development of an ion pairing liquid chromatography with alkanesulfonates coupled to tandem mass spectrometry for the analysis of 10 aminoglycosides (spectinomycin, streptomycin, dihydrostreptomycin, kanamycin, apramycin, gentamicin, neomycin and sisomicin) in wastewater samples. The novelty of this method lies in the addition of the ion paring salt directly and only into the sample vial and not in the mobile phase, lowering the amount of salt added and consequently reducing signal inhibition. The optimized method was validated and showed satisfactory resolution, performances suitable with the analysis of aminoglycosides in wastewater samples, with limits of quantifications less than 10 ng/mL for most of the compounds, low matrix effects, high accuracy (85%-115% recoveries) and reproducibility (2%-12%RSD). It was then applied successfully to raw and treated wastewater samples.


Assuntos
Aminoglicosídeos/análise , Espectrometria de Massas em Tandem/métodos , Águas Residuárias/análise , Adsorção , Animais , Antibacterianos/análise , Cromatografia Líquida , Resíduos de Drogas/análise , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Reprodutibilidade dos Testes , Rios/química , Solventes/química
11.
Antibiotics (Basel) ; 10(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672037

RESUMO

Antibiotics used in agriculture may reach the environment and stimulate the development and dissemination of antibiotic resistance in the soil microbiome. However, the scope of this phenomenon and the link to soil properties needs to be elucidated. This study compared the short-term effects of a range of gentamicin concentrations on the microbiome and resistome of bacterial enrichments and microcosms of an agricultural soil using a metagenomic approach. Gentamicin impact on bacterial biomass was roughly estimated by the number of 16SrRNA gene copies. In addition, the soil microbiome and resistome response to gentamicin pollution was evaluated by 16SrRNA gene and metagenomic sequencing, respectively. Finally, gentamicin bioavailability in soil was determined. While gentamicin pollution at the scale of µg/g strongly influenced the bacterial communities in soil enrichments, concentrations up to 1 mg/g were strongly adsorbed onto soil particles and did not cause significant changes in the microbiome and resistome of soil microcosms. This study demonstrates the differences between the response of bacterial communities to antibiotic pollution in enriched media and in their environmental matrix, and exposes the limitations of culture-based studies in antibiotic-resistance surveillance. Furthermore, establishing links between the effects of antibiotic pollution and soil properties is needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA