Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Talanta ; 276: 126221, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776768

RESUMO

Streptococcus pyogenes (Group A Streptococcus; GAS) is a Gram-positive bacterium responsible for substantial human mortality and morbidity. Conventional diagnosis of GAS pharyngitis relies on throat swab culture, a low-throughput, slow, and relatively invasive 'gold standard'. While molecular approaches are becoming increasingly utilized, the potential of saliva as a diagnostic fluid for GAS infection remains largely unexplored. Here, we present a novel, high-throughput, sensitive, and robust speB qPCR assay that reliably detects GAS in saliva using innovative 3base™ technology (Genetic Signatures Limited, Sydney, Australia). The assay has been validated on baseline, acute, and convalescent saliva samples generated from the Controlled Human Infection for Vaccination Against Streptococcus (CHIVAS-M75) trial, in which healthy adult participants were challenged with emm75 GAS. In these well-defined samples, our high-throughput assay outperforms throat culture and conventional qPCR in saliva respectively, affirming the utility of the 3base™ platform, demonstrating the feasibility of saliva as a diagnostic biofluid, and paving the way for the development of novel non-invasive approaches for the detection of GAS and other oropharyngeal pathogens.

2.
Microbiology (Reading) ; 169(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37990974

RESUMO

Antibiotic persistence is a phenomenon observed when genetically susceptible cells survive long-term exposure to antibiotics. These 'persisters' are an intrinsic component of bacterial populations and stem from phenotypic heterogeneity. Persistence to antibiotics is a concern for public health globally, as it increases treatment duration and can contribute to treatment failure. Furthermore, there is a growing array of evidence that persistence is a 'stepping-stone' for the development of genetic antimicrobial resistance. Urinary tract infections (UTIs) are a major contributor to antibiotic consumption worldwide, and are known to be both persistent (i.e. affecting the host for a prolonged period) and recurring. Currently, in clinical settings, routine laboratory screening of pathogenic isolates does not determine the presence or the frequency of persister cells. Furthermore, the majority of research undertaken on antibiotic persistence has been done on lab-adapted bacterial strains. In the study presented here, we characterized antibiotic persisters in a panel of clinical uropathogenic Escherichia coli isolates collected from hospitals in the UK and Australia. We found that a urine-pH mimicking environment not only induces higher levels of antibiotic persistence to meropenem and colistin than standard laboratory growth conditions, but also results in rapid development of transient colistin resistance, regardless of the genetic resistance profile of the isolate. Furthermore, we provide evidence for the presence of multiple virulence factors involved in stress resistance and biofilm formation in the genomes of these isolates, whose activities have been previously shown to contribute to the formation of persister cells.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Colistina/farmacologia , Meropeném/farmacologia , Meropeném/uso terapêutico , Escherichia coli Uropatogênica/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Bactérias/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia
3.
Virulence ; 14(1): 2264090, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37830540

RESUMO

ABBREVIATIONS: CovRS, control of virulence regulatory system; GAS, Group A Streptococcus; PMN, polymorphonuclear leukocyte.


Assuntos
Neutrófilos , Infecções Estreptocócicas , Humanos , Streptococcus pyogenes/genética , Caspases/genética , Proteínas de Bactérias/genética , Virulência
4.
Sci Rep ; 11(1): 8200, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859234

RESUMO

Group A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Biofilm formation has been implicated in both pharyngeal and dermal GAS infections. In vitro, plate-based assays have shown that several GAS M-types form biofilms, and multiple GAS virulence factors have been linked to biofilm formation. Although the contributions of these plate-based studies have been valuable, most have failed to mimic the host environment, with many studies utilising abiotic surfaces. GAS is a human specific pathogen, and colonisation and subsequent biofilm formation is likely facilitated by distinct interactions with host tissue surfaces. As such, a host cell-GAS model has been optimised to support and grow GAS biofilms of a variety of GAS M-types. Improvements and adjustments to the crystal violet biofilm biomass assay have also been tailored to reproducibly detect delicate GAS biofilms. We propose 72 h as an optimal growth period for yielding detectable biofilm biomass. GAS biofilms formed are robust and durable, and can be reproducibly assessed via staining/washing intensive assays such as crystal violet with the aid of methanol fixation prior to staining. Lastly, SEM imaging of GAS biofilms formed by this model revealed GAS cocci chains arranged into three-dimensional aggregated structures with EPS matrix material. Taken together, we outline an efficacious GAS biofilm pharyngeal cell model that can support long-term GAS biofilm formation, with biofilms formed closely resembling those seen in vivo.


Assuntos
Biofilmes/crescimento & desenvolvimento , Faringe/microbiologia , Streptococcus pyogenes/fisiologia , Calibragem , Técnicas de Cultura de Células/normas , Células Cultivadas , Humanos , Técnicas Microbiológicas/normas , Modelos Biológicos , Faringe/citologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/crescimento & desenvolvimento , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo
5.
Antibiotics (Basel) ; 9(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158121

RESUMO

Group A Streptococcus (GAS) causes 700 million infections and accounts for half a million deaths per year. Antibiotic treatment failure rates of 20-40% have been observed. The role host cell glycans play in GAS biofilm formation in the context of GAS pharyngitis and subsequent antibiotic treatment failure has not been previously investigated. GAS serotype M12 GAS biofilms were assessed for biofilm formation on Detroit 562 pharyngeal cell monolayers following enzymatic removal of all N-linked glycans from pharyngeal cells with PNGase F. Removal of N-linked glycans resulted in an increase in biofilm biomass compared to untreated controls. Further investigation into the removal of terminal mannose and sialic acid residues with α1-6 mannosidase and the broad specificity sialidase (Sialidase A) also found that biofilm biomass increased significantly when compared to untreated controls. Increases in biofilm biomass were associated with increased production of extracellular polymeric substances (EPS). Furthermore, it was found that M12 GAS biofilms grown on untreated pharyngeal monolayers exhibited a 2500-fold increase in penicillin tolerance compared to planktonic GAS. Pre-treatment of monolayers with exoglycosidases resulted in a further doubling of penicillin tolerance in resultant biofilms. Lastly, an additional eight GAS emm-types were assessed for biofilm formation in response to terminal mannose and sialic acid residue removal. As seen for M12, biofilm biomass on monolayers increased following removal of terminal mannose and sialic acid residues. Collectively, these data demonstrate that pharyngeal cell surface glycan structures directly impact GAS biofilm formation in a strain and glycan specific fashion.

6.
Nat Commun ; 11(1): 5018, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024089

RESUMO

The re-emergence of scarlet fever poses a new global public health threat. The capacity of North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS) to cause scarlet fever has been linked epidemiologically to the presence of novel prophages, including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins. We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular stores is a previously unappreciated GAS virulence mechanism that promotes SSA release and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1 is required for resistance to neutrophil killing. Investigating single, double and triple isogenic knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir exotoxins.


Assuntos
Exotoxinas/metabolismo , Prófagos/genética , Streptococcus pyogenes/patogenicidade , Streptococcus pyogenes/virologia , Animais , Proteínas de Bactérias/farmacologia , Linhagem Celular , Eritrócitos/efeitos dos fármacos , Exotoxinas/genética , Feminino , Glutationa/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Faringe/citologia , Escarlatina/epidemiologia , Escarlatina/microbiologia , Streptococcus pyogenes/genética , Estreptolisinas/farmacologia , Superantígenos/genética , Superantígenos/metabolismo
7.
Methods Mol Biol ; 2136: 145-151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32430818

RESUMO

Glycans, also known as carbohydrates, are abundant upon cell surfaces, where they often mediate host-pathogen interactions. The specific recognition of host glycans by pathogenic lectins is an important process that allows the adherence of bacteria to the host epithelial surface in many species, including Group A Streptococcus (GAS). Glycan microarrays present a sensitive, high-throughput approach for identifying novel lectin-glycan interactions and can be applied in the context of whole bacteria or purified bacterial proteins.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Polissacarídeos/metabolismo , Streptococcus pyogenes/metabolismo , Aderência Bacteriana/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Lectinas/metabolismo , Análise em Microsséries
8.
J Ren Nutr ; 30(5): 462-469, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32001127

RESUMO

OBJECTIVE: Constipation is common in patients with end-stage kidney disease. Nondrug strategies to manage constipation are challenging because of dietary potassium, phosphate, and fluid restrictions. Nuts are a high-fiber food but are excluded from the diet because of the high potassium and phosphate content. The aim of this study was to examine the safety and efficacy of using nuts to improve constipation in adults undertaking hemodialysis (HD). DESIGN AND METHODS: Adult patients undertaking HD were recruited to this nonrandomized, 10-week repeated measures, within-subject, pragmatic clinical trial, conducted in two HD units. The intervention consisted of consumption of 40g of raw almonds daily for four weeks, followed by a two-week washout and four-week control period. The primary safety outcome measures were change in predialysis serum potassium and phosphate levels. The primary efficacy outcome was reduction in constipation, measured using the Bristol Stool Form Scale and Palliative Care Outcome Scale (POS-S) renal symptom score. Secondary outcomes included quality of life, selected uremic toxins, cognition, gut microbiota profile, and symptom burden. RESULTS: Twenty patients completed the trial (median age: 67 [interquartile range: 57.5-77.8] years, 51% male). After controlling for dialysis adequacy, anuria, dietary intake, bicarbonate, and parathyroid hormone, there were no statistically significant changes in serum potassium (P = 0.21) or phosphate (P = 0.16) associated with daily consumption of almonds. However, statistically significant improvements in constipation were seen at weeks 2, 3, 4, and 10. There were statistically significant improvements in quality of life (P = 0.030), overall symptom burden (P = 0.002), vomiting (P = 0.020), itching (P = 0.006), and skin changes (P = 0.002). CONCLUSION: Daily consumption of almonds for four weeks was safe, effective, and well tolerated. Improvements in quality of life and symptom burden warrant further research to elucidate potential mechanisms. The findings support the potential reinclusion of foods such as nuts into the diet of patients who underwent HD.


Assuntos
Constipação Intestinal/dietoterapia , Constipação Intestinal/etiologia , Dieta/métodos , Falência Renal Crônica/complicações , Nozes , Diálise Renal , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Constipação Intestinal/fisiopatologia , Feminino , Humanos , Intestinos/fisiopatologia , Falência Renal Crônica/terapia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Front Cell Infect Microbiol ; 10: 596023, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585270

RESUMO

Invasive infections due to group A Streptococcus (GAS) advance rapidly causing tissue degradation and unregulated inflammation. Neutrophils are the primary immune cells that respond to GAS. The neutrophil response to GAS was characterised in response to two M1T1 isolates; 5448 and animal passaged variant 5448AP. Co-incubation of neutrophils with 5448AP resulted in proliferation of GAS and lowered the production of reactive oxygen species when compared with 5448. Infection with both strains invoked neutrophil death, however apoptosis was reduced in response to 5448AP. Both strains induced neutrophil caspase-1 and caspase-4 expression in vitro, with inflammatory caspase activation detected in vitro and in vivo. GAS infections involving strains such as 5448AP that promote an inflammatory neutrophil phenotype may contribute to increased inflammation yet ineffective bacterial eradication, contributing to the severity of invasive GAS infections.


Assuntos
Infecções Estreptocócicas , Streptococcus pyogenes , Animais , Caspases/genética , Neutrófilos , Fenótipo
10.
FASEB J ; 33(10): 10808-10818, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31262188

RESUMO

Colonization of the oropharynx is the initial step in Group A Streptococcus (GAS) pharyngeal infection. We have previously reported that the highly virulent M1T1 GAS clone attaches to oral epithelial cells via M1 protein interaction with blood group antigen carbohydrate structures. Here, we have identified that colonization of human oral epithelial cells by GAS serotypes M3 and M12 is mediated by human blood group antigens [ABO(H)] and Lewis (Le) antigen expression. Removal of linkage-specific fucose, galactose, N-acetylgalactosamine, and sialic acid modulated GAS colonization, dependent on host ABO(H) blood group and Le expression profile. Furthermore, N-linked glycans from human salivary glycoproteins, when released and purified, were potent inhibitors of M1, M3, and M12 GAS colonization ex vivo. These data highlight the important role played by human protein glycosylation patterns in GAS attachment to oral epithelial cell surfaces.-De Oliveira, D. M. P., Everest-Dass, A., Hartley-Tassell, L., Day, C. J., Indraratna, A., Brouwer, S., Cleary, A., Kautto, L., Gorman, J., Packer, N. H., Jennings, M. P., Walker, M. J., Sanderson-Smith, M. L. Human glycan expression patterns influence Group A streptococcal colonization of epithelial cells.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Polissacarídeos/metabolismo , Streptococcus pyogenes/patogenicidade , Antígenos de Bactérias/fisiologia , Aderência Bacteriana/imunologia , Aderência Bacteriana/fisiologia , Proteínas da Membrana Bacteriana Externa/fisiologia , Antígenos de Grupos Sanguíneos/química , Proteínas de Transporte/fisiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Glicosilação , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Técnicas In Vitro , Polissacarídeos/química , Polissacarídeos/imunologia , Ligação Proteica , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/imunologia , Proteínas e Peptídeos Salivares/metabolismo , Infecções Estreptocócicas/etiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/crescimento & desenvolvimento , Streptococcus pyogenes/fisiologia , Virulência/fisiologia
11.
Microbes Infect ; 21(8-9): 412-417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31009808

RESUMO

Plasmin(ogen) acquisition is critical for invasive disease initiation by Streptococcus pyogenes (GAS). Host urokinase plasminogen activator (uPA) plays a role in mediating plasminogen activation for GAS dissemination, however the contribution of tissue-type plasminogen activator (tPA) to GAS virulence is unknown. Using novel tPA-deficient ALBPLG1 mice, our study revealed no difference in mouse survival, bacterial dissemination or the pathology of GAS infection in the absence of tPA in AlbPLG1/tPA-/- mice compared to AlbPLG1 mice. This study suggests that tPA has a limited role in this humanized model of GAS infection, further highlighting the importance of its counterpart uPA in GAS disease.


Assuntos
Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/patogenicidade , Ativador de Plasminogênio Tecidual/metabolismo , Animais , Carga Bacteriana , Modelos Animais de Doenças , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Viabilidade Microbiana , Mutação , Infecções Estreptocócicas/patologia , Ativador de Plasminogênio Tecidual/genética , Virulência
12.
Clin Infect Dis ; 65(9): 1523-1531, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29020160

RESUMO

BACKGROUND: Group A Streptococcus (GAS) skin infections are particularly prevalent in developing nations. The GAS M protein, by which strains are differentiated into >220 different emm types, is immunogenic and elicits protective antibodies. A major obstacle for vaccine development has been the traditional understanding that immunity following infection is restricted to a single emm type. However, recent evidence has led to the hypothesis of immune cross-reactivity between emm types. METHODS: We investigated the human serological response to GAS impetigo in Fijian schoolchildren, focusing on 3 major emm clusters (E4, E6, and D4). Pre- and postinfection sera were assayed by enzyme-linked immunosorbent assay with N-terminal M peptides and bactericidal assays using the infecting-type strain, emm cluster-related strains, and nonrelated strains. RESULTS: Twenty of the 53 paired sera demonstrated a ≥4-fold increase in antibody titer against the infecting type. When tested against all cluster-related M peptides, we found that 9 of 17 (53%) paired sera had a ≥4-fold increase in antibody titer to cluster-related strains as well. When grouped by cluster, the mean change to cluster-related emm types in E4 and E6 was >4-fold (5.9-fold and 19.5-fold, respectively) but for D4 was 3.8-fold. The 17 paired sera were tested in bactericidal assays against selected cluster-related and nonrelated strains. While the responses were highly variable, numerous instances of cross-reactive killing were observed. CONCLUSIONS: These data demonstrate that M type-specific and cross-reactive immune responses occur following skin infection. The cross-reactive immune responses frequently align with emm clusters, raising new opportunities to design multivalent vaccines with broad coverage.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/imunologia , Dermatopatias Bacterianas/epidemiologia , Dermatopatias Bacterianas/imunologia , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Adolescente , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Fiji/epidemiologia , Humanos , Estudos Longitudinais , Estudantes
13.
mBio ; 8(1)2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28119471

RESUMO

Streptococcus pyogenes (group A streptococcus [GAS]) is responsible for over 500,000 deaths worldwide each year. The highly virulent M1T1 GAS clone is one of the most frequently isolated serotypes from streptococcal pharyngitis and invasive disease. The oral epithelial tract is a niche highly abundant in glycosylated structures, particularly those of the ABO(H) blood group antigen family. Using a high-throughput approach, we determined that a strain representative of the globally disseminated M1T1 GAS clone 5448 interacts with numerous, structurally diverse glycans. Preeminent among GAS virulence factors is the surface-expressed M protein. M1 protein showed high affinity for several terminal galactose blood group antigen structures. Deletion mutagenesis shows that M1 protein mediates glycan binding via its B repeat domains. Association of M1T1 GAS with oral epithelial cells varied significantly as a result of phenotypic differences in blood group antigen expression, with significantly higher adherence to those cells expressing H antigen structures compared to cells expressing A, B, or AB antigen structures. These data suggest a novel mechanism for GAS attachment to host cells and propose a link between host blood group antigen expression and M1T1 GAS colonization. IMPORTANCE: There has been a resurgence in group A streptococcal (GAS) invasive disease, which has been paralleled by the emergence of the highly virulent M1T1 GAS clone. Intensive research has focused on mechanisms that contribute to the invasive nature of this serotype, while the mechanisms that contribute to host susceptibility to disease and bacterial colonization and persistence are still poorly understood. The M1T1 GAS clone is frequently isolated from the throat, an environment highly abundant in blood group antigen structures. This work examined the interaction of the M1 protein, the preeminent GAS surface protein, against a wide range of host-expressed glycan structures. Our data suggest that susceptibility to infection by GAS in the oral tract may correlate with phenotypic differences in host blood group antigen expression. Thus, variations in host blood group antigen expression may serve as a selective pressure contributing to the dissemination and overrepresentation of M1T1 GAS.


Assuntos
Antígenos de Bactérias/metabolismo , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Proteínas de Transporte/metabolismo , Células Epiteliais/microbiologia , Polissacarídeos/metabolismo , Streptococcus pyogenes/fisiologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Análise Mutacional de DNA , Células Epiteliais/química , Ligação Proteica
14.
Biochemistry ; 54(25): 3960-8, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26029848

RESUMO

Plasminogen (Plg) circulates in the host as two predominant glycoforms. Glycoform I Plg (GI-Plg) contains glycosylation sites at Asn289 and Thr346, whereas glycoform II Plg (GII-Plg) is exclusively glycosylated at Thr346. Surface plasmon resonance experiments demonstrated that Plg binding group A streptococcal M protein (PAM) exhibits comparative equal affinity for GI- and GII-Plg in the "closed" conformation (for GII-Plg, KD = 27.4 nM; for GI-Plg, KD = 37.0 nM). When Plg was in the "open" conformation, PAM exhibited an 11-fold increase in affinity for GII-Plg (KD = 2.8 nM) compared with that for GI-Plg (KD = 33.2 nM). The interaction of PAM with Plg is believed to be mediated by lysine binding sites within kringle (KR) 2 of Plg. PAM-GI-Plg interactions were fully inhibited with 100 mM lysine analogue ε-aminocaproic acid (εACA), whereas PAM-GII-Plg interactions were shown to be weakened but not inhibited in the presence of 400 mM εACA. In contrast, binding to the KR1-3 domains of GII-Plg (angiostatin) by PAM was completely inhibited in the presence 5 mM εACA. Along with PAM, emm pattern D GAS isolates express a phenotypically distinct SK variant (type 2b SK) that requires Plg ligands such as PAM to activate Plg. Type 2b SK was able to generate an active site and activate GII-Plg at a rate significantly higher than that of GI-Plg when bound to PAM. Taken together, these data suggest that GAS selectively recruits and activates GII-Plg. Furthermore, we propose that the interaction between PAM and Plg may be partially mediated by a secondary binding site outside of KR2, affected by glycosylation at Asn289.


Assuntos
Proteínas de Bactérias/metabolismo , Plasminogênio/metabolismo , Infecções Estreptocócicas/enzimologia , Streptococcus pyogenes/metabolismo , Aminocaproatos/química , Aminocaproatos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ativação Enzimática , Glicosilação , Humanos , Kringles , Plasminogênio/química , Plasminogênio/genética , Ligação Proteica , Conformação Proteica , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/química , Streptococcus pyogenes/genética , Streptococcus pyogenes/isolamento & purificação
15.
J Innate Immun ; 7(6): 612-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25997401

RESUMO

Polymorphonuclear leukocyte (PMN) cell death strongly influences the resolution of inflammatory episodes, and may exacerbate adverse pathologies in response to infection. We investigated PMN cell death mechanisms following infection by virulent group A Streptococcus (GAS). Human PMNs were infected in vitro with a clinical, virulent GAS isolate and an avirulent derivative strain, and compared for phagocytosis, the production of reactive oxygen species (ROS), mitochondrial membrane depolarization and apoptotic markers. C57BL/6J mice were then infected, in order to observe the effects on murine PMNs in vivo. Human PMNs phagocytosed virulent GAS less efficiently, produced less ROS and underwent reduced mitochondrial membrane depolarization compared with phagocytosis of avirulent GAS. Morphological and biochemical analyses revealed that PMNs infected with avirulent GAS exhibited nuclear fragmentation and caspase-3 activation consistent with an anti-inflammatory apoptotic phenotype. Conversely, virulent GAS induced PMN vacuolization and plasma membrane permeabilization, leading to a necrotic form of cell death. Infection of the mice with virulent GAS engendered significantly higher systemic pro-inflammatory cytokine release and localized infiltration of murine PMNs, with cells associated with virulent GAS infection exhibiting reduced apoptotic potential. Avirulent GAS infection was associated with lower levels of proinflammatory cytokines and tissue PMN apoptosis. We propose that the differences in PMN cell death mechanisms influence the inflammatory responses to infection by GAS.


Assuntos
Apoptose/imunologia , Caspase 3/imunologia , Neutrófilos/imunologia , Fagocitose , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Animais , Feminino , Humanos , Masculino , Camundongos , Membranas Mitocondriais/imunologia , Membranas Mitocondriais/patologia , Necrose , Espécies Reativas de Oxigênio/imunologia , Infecções Estreptocócicas/patologia
16.
PLoS Pathog ; 10(8): e1004266, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25165887

RESUMO

Infections caused by group A Streptococcus (GAS) are characterized by robust inflammatory responses and can rapidly lead to life-threatening disease manifestations. However, host mechanisms that respond to GAS, which may influence disease pathology, are understudied. Recent works indicate that GAS infection is recognized by multiple extracellular and intracellular receptors and activates cell signalling via discrete pathways. Host leukocyte receptor binding to GAS-derived products mediates release of inflammatory mediators associated with severe GAS disease. GAS induces divergent phagocyte programmed cell death responses and has inflammatory implications. Epithelial cell apoptotic and autophagic components are mobilized by GAS infection, but can be subverted to ensure bacterial survival. Examination of host interactions with GAS and consequences of GAS infection in the context of cellular receptors responsible for GAS recognition, inflammatory mediator responses, and cell death mechanisms, highlights potential avenues for diagnostic and therapeutic intervention. Understanding the molecular and cellular basis of host symptoms during severe GAS disease will assist the development of improved treatment regimens for this formidable pathogen.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Inflamação/microbiologia , Infecções Estreptocócicas/microbiologia , Animais , Morte Celular/fisiologia , Humanos , Inflamação/imunologia , Inflamação/fisiopatologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/fisiopatologia , Streptococcus pyogenes
17.
Clin Microbiol Rev ; 27(2): 264-301, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24696436

RESUMO

Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.


Assuntos
Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus pyogenes/patogenicidade , Fatores de Virulência/metabolismo , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Interações Hospedeiro-Patógeno , Humanos , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/mortalidade , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/imunologia , Streptococcus pyogenes/genética , Virulência , Fatores de Virulência/genética
18.
Biochem J ; 458(1): 23-31, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24266842

RESUMO

SK (streptokinase) is a secreted plasminogen activator and virulence factor of GAS (group A Streptococcus). Among GAS isolates, SK gene sequences are polymorphic and are grouped into two sequence clusters (cluster type-1 and cluster type-2) with cluster type-2 being further classified into subclusters (type-2a and type-2b). In the present study, we examined the role of bacterial and host-derived cofactors in SK-mediated plasminogen activation. All SK variants, apart from type-2b, can form an activator complex with Glu-Plg (Glu-plasminogen). Specific ligand-binding-induced conformational changes in Glu-Plg mediated by fibrinogen, PAM (plasminogen-binding group A streptococcal M protein), fibrinogen fragment D or fibrin, were required for type-2b SK to form a functional activator complex with Glu-Plg. In contrast with type-1 and type-2a SK, type-2b SK activator complexes were inhibited by α2-antiplasmin unless bound to fibrin or to the GAS cell-surface via PAM in combination with fibrinogen. Taken together, these data suggest that type-2b SK plasminogen activation may be restricted to specific microenvironments within the host such as fibrin deposits or the bacterial cell surface through the action of α2-antiplasmin. We conclude that phenotypic SK variation functionally underpins a pathogenic mechanism whereby SK variants differentially focus plasminogen activation, leading to specific niche adaption within the host.


Assuntos
Plasminogênio/metabolismo , Streptococcus pyogenes/enzimologia , Estreptoquinase/metabolismo , Domínio Catalítico
19.
J Innate Immun ; 6(2): 240-50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23969887

RESUMO

The globally significant human pathogen group A Streptococcus (GAS) sequesters the host protease plasmin to the cell surface during invasive disease initiation. Recent evidence has shown that localized plasmin activity prevents opsonization of several bacterial species by key components of the innate immune system in vitro. Here we demonstrate that plasmin at the GAS cell surface resulted in degradation of complement factor C3b, and that plasminogen acquisition is associated with a decrease in C3b opsonization and neutrophil-mediated killing in vitro. Furthermore, the ability to acquire cell surface plasmin(ogen) correlates directly with a decrease in C3b opsonization, neutrophil phagocytosis, and increased bacterial survival in a humanized plasminogen mouse model of infection. These findings demonstrate that localized plasmin(ogen) plays an important role in facilitating GAS escape from the host innate immune response and increases bacterial virulence in the early stages of infection.


Assuntos
Complemento C3b/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Plasminogênio/imunologia , Streptococcus pyogenes/imunologia , Animais , Western Blotting , Complemento C3b/metabolismo , Feminino , Fibrinolisina/imunologia , Fibrinolisina/metabolismo , Citometria de Fluxo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Masculino , Camundongos Transgênicos , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Plasminogênio/genética , Plasminogênio/metabolismo , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/fisiologia , Estreptoquinase/imunologia , Estreptoquinase/metabolismo
20.
PLoS Pathog ; 9(7): e1003469, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23853591

RESUMO

Recruitment of the serine protease plasmin is central to the pathogenesis of many bacterial species, including Group A streptococcus (GAS), a leading cause of morbidity and mortality globally. A key process in invasive GAS disease is the ability to accumulate plasmin at the cell surface, however the role of host activators of plasminogen in this process is poorly understood. Here, we demonstrate for the first time that the urokinase-type plasminogen activator (uPA) contributes to plasmin recruitment and subsequent invasive disease initiation in vivo. In the absence of a source of host plasminogen activators, streptokinase (Ska) was required to facilitate cell surface plasmin acquisition by GAS. However, in the absence of Ska, host activators were sufficient to promote cell surface plasmin acquisition by GAS strain 5448 during incubation with plasminogen or human plasma. Furthermore, GAS were able mediate a significant increase in the activation of zymogen pro-uPA in human plasma. In order to assess the contribution of uPA to invasive GAS disease, a previously undescribed transgenic mouse model of infection was employed. Both C57/black 6J, and AlbPLG1 mice expressing the human plasminogen transgene, were significantly more susceptible to invasive GAS disease than uPA-/- mice. The observed decrease in virulence in uPA-/-mice was found to correlate directly with a decrease in bacterial dissemination and reduced cell surface plasmin accumulation by GAS. These findings have significant implications for our understanding of GAS pathogenesis, and research aimed at therapeutic targeting of plasminogen activation in invasive bacterial infections.


Assuntos
Resistência à Doença , Plasminogênio/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Cruzamentos Genéticos , Suscetibilidade a Doenças , Precursores Enzimáticos/sangue , Precursores Enzimáticos/metabolismo , Fibrinolisina/metabolismo , Heterozigoto , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasminogênio/genética , Proteólise , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes/patogenicidade , Estreptoquinase/metabolismo , Propriedades de Superfície , Ativador de Plasminogênio Tipo Uroquinase/sangue , Ativador de Plasminogênio Tipo Uroquinase/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA