Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biodivers Data J ; 11: e113074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312340

RESUMO

Background: Soil-dwelling organisms populate the spaces-referred to as interstices-between the litter on the soil surface and the pores in the soil's organo-mineral matrix. These organisms have pivotal roles in soil ecosystem functions, such as the breakdown and decomposition of organic matter, the dispersal of bacterial and fungal spores and biological habitat transformation. These functions, in turn, contribute to broader ecosystem services like carbon and nutrient cycling, soil organic matter regulation and both chemical and physical soil fertility.This study provides morphological data pertaining to a range of soil organism sizes, specifically in Argiudol soils subjected to varying levels of agricultural activity in the Rolling Pampas Region, one of the world's most extensive and fertile plains.The primary focus is on soil microarthropods-namely, Acari (mites) and Collembola (springtails)-with a body width of less than 2 mm. These organisms constitute the majority of life in the intricate soil pore network. Additionally, the study documents species of earthworms (Oligochaeta, Crassiclitelata), recognised as ecosystem engineers for their ability to create physical channels in the soil matrix and to distribute organic matter. Moreover, the study includes measurements of morphological traits of soil-dwelling "macrofauna" (organisms with a body width greater than 2 mm), which are also implicated in various soil ecosystem functions. These include population regulation by apex predators, organic matter decomposition, biogenic structure formation, nutrient mobilisation and herbivory. New information: In this paper, we report both the geographical locations and individual measurements of key morphological traits for over 7,000 specimens, covering a range of soil-dwelling organisms. These include springtails (Entognatha, Collembola), mites (Arachnida, Acari), earthworms (Oligochaeta, Crassiclitellata) and additional soil macrofauna. All specimens were collected from typical Argiudol soils located in three distinct agricultural systems characterised by varying levels of land-use intensity. To our knowledge, no other dataset exists providing this information for the Argentinian Pampas.

2.
PeerJ ; 3: e826, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25780777

RESUMO

Plant decomposition is dependant on the activity of the soil biota and its interactions with climate, soil properties, and plant residue inputs. This work assessed the roles of different groups of the soil biota on litter decomposition, and the way they are modulated by soil use. Litterbags of different mesh sizes for the selective exclusion of soil fauna by size (macro, meso, and microfauna) were filled with standardized dried leaves and placed on the same soil under different use intensities: naturalized grasslands, recent agriculture, and intensive agriculture fields. During five months, litterbags of each mesh size were collected once a month per system with five replicates. The remaining mass was measured and decomposition rates calculated. Differences were found for the different biota groups, and they were dependant on soil use. Within systems, the results show that in the naturalized grasslands, the macrofauna had the highest contribution to decomposition. In the recent agricultural system it was the combined activity of the macro- and mesofauna, and in the intensive agricultural use it was the mesofauna activity. These results underscore the relative importance and activity of the different groups of the edaphic biota and the effects of different soil uses on soil biota activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA