Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Nat Commun ; 15(1): 2007, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453922

RESUMO

Monoclonal IgG antibodies constitute the fastest growing class of therapeutics. Thus, there is an intense interest to design more potent antibody formats, where long plasma half-life is a commercially competitive differentiator affecting dosing, frequency of administration and thereby potentially patient compliance. Here, we report on an Fc-engineered variant with three amino acid substitutions Q311R/M428E/N434W (REW), that enhances plasma half-life and mucosal distribution, as well as allows for needle-free delivery across respiratory epithelial barriers in human FcRn transgenic mice. In addition, the Fc-engineered variant improves on-target complement-mediated killing of cancer cells as well as both gram-positive and gram-negative bacteria. Hence, this versatile Fc technology should be broadly applicable in antibody design aiming for long-acting prophylactic or therapeutic interventions.


Assuntos
Neoplasias , Receptores Fc , Camundongos , Animais , Humanos , Imunoglobulina G , Meia-Vida , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Camundongos Transgênicos , Anticorpos Monoclonais , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico
2.
PNAS Nexus ; 2(12): pgad403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077689

RESUMO

Immunocompromised patients often fail to raise protective vaccine-induced immunity against the global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Although monoclonal antibodies have been authorized for clinical use, most have lost their ability to potently neutralize the evolving Omicron subvariants. Thus, there is an urgent need for treatment strategies that can provide protection against these and emerging SARS-CoV-2 variants to prevent the development of severe coronavirus disease 2019. Here, we report on the design and characterization of a long-acting viral entry-blocking angiotensin-converting enzyme 2 (ACE2) dimeric fusion molecule. Specifically, a soluble truncated human dimeric ACE2 variant, engineered for improved binding to the receptor-binding domain of SARS-CoV-2, was fused with human albumin tailored for favorable engagement of the neonatal fragment crystallizable receptor (FcRn), which resulted in enhanced plasma half-life and allowed for needle-free transmucosal delivery upon nasal administration in human FcRn-expressing transgenic mice. Importantly, the dimeric ACE2-fused albumin demonstrated potent neutralization of SARS-CoV-2 immune escape variants.

3.
Commun Biol ; 5(1): 832, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982144

RESUMO

Antibody-based therapeutics (ABTs) are used to treat a range of diseases. Most ABTs are either full-length IgG1 antibodies or fusions between for instance antigen (Ag)-binding receptor domains and the IgG1 Fc fragment. Interestingly, their plasma half-life varies considerably, which may relate to how they engage the neonatal Fc receptor (FcRn). As such, there is a need for an in-depth understanding of how different features of ABTs affect FcRn-binding and transport behavior. Here, we report on how FcRn-engagement of the IgG1 Fc fragment compare to clinically relevant IgGs and receptor domain Fc fusions, binding to VEGF or TNF-α. The results reveal FcRn-dependent intracellular accumulation of the Fc, which is in line with shorter plasma half-life than that of full-length IgG1 in human FcRn-expressing mice. Receptor domain fusion to the Fc increases its half-life, but not to the extent of IgG1. This is mirrored by a reduced cellular recycling capacity of the Fc-fusions. In addition, binding of cognate Ag to ABTs show that complexes of similar size undergo cellular transport at different rates, which could be explained by the biophysical properties of each ABT. Thus, the study provides knowledge that should guide tailoring of ABTs regarding optimal cellular sorting and plasma half-life.


Assuntos
Imunoglobulina G , Receptores Fc , Animais , Meia-Vida , Humanos , Fragmentos Fc das Imunoglobulinas/metabolismo , Camundongos , Receptores Fc/genética
4.
Placenta ; 127: 77-87, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35981406

RESUMO

INTRODUCTION: The acquisition of humoral immunity in utero is essential for the fetus. The crucial protein, which is responsible for this part of immunity, is immunoglobulin-G (IgG). Immune functions of IgGs are mediated via the interaction of the crystallizable fragment (Fc) region of IgG with specific Fc γ receptors (FcγRs). However, an atypical FcγR, the neonatal Fc receptor (FcRn), is a key regulator of IgG transfer across the human placenta. During the last four decades ex vivo placental perfusion studies have contributed significantly to the study of mechanisms of IgG transfer across the multicellular placental barrier. METHOD: A PubMed search was conducted by using specific keywords: placenta, perfusion and IgG to review manuscripts using human placental perfusion to study the transplacental transfer of IgG. Relevant studies found in reference lists of these manuscripts were also added to the review, and references were included that supported or gave nuance to the discussion of the mechanisms of IgG kinetics in the placenta. RESULTS AND DISCUSSION: We found twenty publications on the study of transplacental transfer of IgG using human ex vivo placental perfusion, by research groups with partly different settings. This review summarizes knowledge about placental IgG transfer, with a strong focus on the contributions from ex vivo placental perfusion studies.


Assuntos
Imunoglobulina G , Placenta , Feminino , Feto/metabolismo , Humanos , Recém-Nascido , Troca Materno-Fetal , Perfusão , Placenta/metabolismo , Gravidez
5.
Protein Eng Des Sel ; 352022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35871543

RESUMO

TCR-like antibodies represent a unique type of engineered antibodies with specificity toward pHLA, a ligand normally restricted to the sensitive recognition by T cells. Here, we report a phage display-based sequential development path of such antibodies. The strategy goes from initial lead identification through in silico informed CDR engineering in combination with framework engineering for affinity and thermostability optimization, respectively. The strategy allowed the identification of HLA-DQ2.5 gluten peptide-specific TCR-like antibodies with low picomolar affinity. Our method outlines an efficient and general method for development of this promising class of antibodies, which should facilitate their utility including translation to human therapy.


Assuntos
Anticorpos , Bacteriófagos , Humanos , Peptídeos/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
6.
Sci Immunol ; 7(70): eabj1640, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486676

RESUMO

Humans have four IgG antibody subclasses that selectively or differentially engage immune effector molecules to protect against infections. Although IgG1 has been studied in detail and is the subclass of most approved antibody therapeutics, increasing evidence indicates that IgG3 is associated with enhanced protection against pathogens. Here, we report that IgG3 has superior capacity to mediate intracellular antiviral immunity compared with the other subclasses due to its uniquely extended and flexible hinge region, which facilitates improved recruitment of the cytosolic Fc receptor TRIM21, independently of Fc binding affinity. TRIM21 may also synergize with complement C1/C4-mediated lysosomal degradation via capsid inactivation. We demonstrate that this process is potentiated by IgG3 in a hinge-dependent manner. Our findings reveal differences in how the four IgG subclasses mediate intracellular immunity, knowledge that may guide IgG subclass selection and engineering of antiviral antibodies for prophylaxis and therapy.


Assuntos
Antivirais , Imunoglobulina G , Anticorpos Antivirais , Proteínas do Sistema Complemento , Humanos , Receptores Fc
7.
iScience ; 25(2): 103746, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35118359

RESUMO

Monoclonal IgG antibodies are the fastest growing class of biologics, but large differences exist in their plasma half-life in humans. Thus, to design IgG antibodies with favorable pharmacokinetics, it is crucial to identify the determinants of such differences. Here, we demonstrate that the variable region sequences of IgG antibodies greatly affect cellular uptake and subsequent recycling and rescue from intracellular degradation by endothelial cells. When the variable sequences are masked by the cognate antigen, it influences both their transport behavior and binding to the neonatal Fc receptor (FcRn), a key regulator of IgG plasma half-life. Furthermore, we show how charge patch differences in the variable domains modulate both binding and transport properties and that a short plasma half-life, due to unfavorable charge patches, may partly be overcome by Fc-engineering for improved FcRn binding.

8.
Sci Immunol ; 6(62)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417258

RESUMO

Antibodies specific for peptides bound to human leukocyte antigen (HLA) molecules are valuable tools for studies of antigen presentation and may have therapeutic potential. Here, we generated human T cell receptor (TCR)-like antibodies toward the immunodominant signature gluten epitope DQ2.5-glia-α2 in celiac disease (CeD). Phage display selection combined with secondary targeted engineering was used to obtain highly specific antibodies with picomolar affinity. The crystal structure of a Fab fragment of the lead antibody 3.C11 in complex with HLA-DQ2.5:DQ2.5-glia-α2 revealed a binding geometry and interaction mode highly similar to prototypic TCRs specific for the same complex. Assessment of CeD biopsy material confirmed disease specificity and reinforced the notion that abundant plasma cells present antigen in the inflamed CeD gut. Furthermore, 3.C11 specifically inhibited activation and proliferation of gluten-specific CD4+ T cells in vitro and in HLA-DQ2.5 humanized mice, suggesting a potential for targeted intervention without compromising systemic immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Doença Celíaca/imunologia , Glutens/imunologia , Antígenos HLA-DQ/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Epitopos de Linfócito T/imunologia , Glutens/química , Antígenos HLA-DQ/química , Humanos , Ativação Linfocitária/imunologia , Camundongos , Modelos Moleculares , Peptídeos/química , Receptores de Antígenos de Linfócitos T/química
9.
MAbs ; 13(1): 1893888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33691596

RESUMO

Albumin has a serum half-life of 3 weeks in humans. This feature can be used to improve the pharmacokinetics of shorter-lived biologics. For instance, an albumin-binding domain (ABD) can be used to recruit albumin. A prerequisite for such design is that the ABD-albumin interaction does not interfere with pH-dependent binding of albumin to the human neonatal Fc receptor (FcRn), as FcRn acts as the principal regulator of the half-life of albumin. Thus, there is a need to know how ABDs act in the context of fusion partners and human FcRn. Here, we studied the binding and transport properties of human immunoglobulin A1 (IgA1), fused to a Streptococcus protein G-derived engineered ABD, in in vitro and in vivo systems harboring human FcRn. IgA has great potential as a therapeutic protein, but its short half-life is a major drawback. We demonstrate that ABD-fused IgA1 binds human FcRn pH-dependently and is rescued from cellular degradation in a receptor-specific manner in the presence of albumin. This occurs when ABD is fused to either the light or the heavy chain. In human FcRn transgenic mice, IgA1-ABD in complex with human albumin, gave 4-6-fold extended half-life compared to unmodified IgA1, where the light chain fusion showed the longest half-life. When the heavy chain-fused protein was pre-incubated with an engineered human albumin with improved FcRn binding, cellular rescue and half-life was further enhanced. Our study reveals how an ABD, which does not interfere with albumin binding to human FcRn, may be used to extend the half-life of IgA.Abbreviations: ABD - Albumin binding domain, ADA - anti-drug-antibodies, ADCC - Antibody-dependent cellular cytotoxicity, ELISA - Enzyme-linked Immunosorbent assay, FcαRI - Fcα receptor, FcγR - Fcγ receptor, FcRn - The neonatal Fc receptor, GST - Glutathione S-transferase, HC - Heavy chain, HERA - Human endothelial cell-based recycling assay, Her2 - Human epidermal growth factor 2, HMEC - Human microvascular endothelial cells, IgG - Immunoglobulin G, IgA - Immunoglobulin A, LC - Light chain, QMP - E505Q/T527M/K573P, WT - Wild type.


Assuntos
Proteínas de Bactérias/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina A/metabolismo , Receptores Fc/metabolismo , Albumina Sérica Humana/metabolismo , Animais , Especificidade de Anticorpos , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Células HEK293 , Meia-Vida , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunoglobulina A/genética , Imunoglobulina A/imunologia , Camundongos Transgênicos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteólise , Receptores Fc/genética , Receptores Fc/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Albumina Sérica Humana/genética , Albumina Sérica Humana/imunologia
10.
Vaccine ; 39(11): 1583-1592, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33612340

RESUMO

Targeted delivery of antigen to antigen-presenting cells (APCs) enhances antigen presentation and thus, is a potent strategy for making more efficacious vaccines. This can be achieved by use of antibodies with specificity for endocytic surface molecules expressed on the APC. We aimed to compare two different antibody-antigen fusion modes in their ability to induce T-cell responses; first, exchange of immunoglobulin (Ig) constant domain loops with a T-cell epitope (Troybody), and second, fusion of T-cell epitope or whole antigen to the antibody C-terminus. Although both strategies are well-established, they have not previously been compared using the same system. We found that both antibody-antigen fusion modes led to presentation of the T-cell epitope. The strength of the T-cell responses varied, however, with the most efficient Troybody inducing CD4 T-cell proliferation and cytokine secretion at 10-100-fold lower concentration than the antibodies carrying antigen fused to the C-terminus, both in vitro and after intravenous injection in mice. Furthermore, we exchanged this loop with an MHCI-restricted T-cell epitope, and the resulting antibody enabled efficient cross-presentation to CD8 T cells in vivo. Targeting of antigen to APCs by use of such antibody-antigen fusions is thus an attractive vaccination strategy for increased activation of both CD4 and CD8 peptide-specific T cells.


Assuntos
Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Animais , Apresentação de Antígeno , Células Apresentadoras de Antígenos , Linfócitos T CD8-Positivos , Camundongos
11.
Scand J Immunol ; 93(2): e13017, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33351196

RESUMO

The neonatal Fc receptor (FcRn) was first recognized for its role in transfer of maternal IgG to the foetus or newborn, providing passive immunity early in life. However, it has become clear that the receptor is versatile, widely expressed and plays an indispensable role in both immunological and non-immunological processes throughout life. The receptor rescues immunoglobulin G (IgG) and albumin from intracellular degradation and shuttles the ligands across polarized cell barriers, in all cases via a pH-dependent binding-and-release mechanism. These processes secure distribution and high levels of both IgG and albumin throughout the body. At mucosal sites, FcRn transports IgG across polarized epithelial cells where it retrieves IgG in complex with luminal antigens that is delivered to tissue-localized immune cells. In dendritic cells (DCs), FcRn orchestrates processing of IgG-opsonized immune complexes (ICs) in concert with classical Fcγ receptors, which results in antigen presentation and cross-presentation of antigenic peptides on MHC class II and I to CD4+ and CD8+ T cells, respectively. Hence, FcRn regulates transport of the ligands within and across different types of cells, but also processing of IgG-ICs by immune cells. As such, the receptor is involved in immune surveillance and protection against infections. In this brief review, we highlight how FcRn expressed by hematopoietic and non-hematopoietic cells contributes to immune regulation at mucosal barriers-biology that can be utilized in development of biologics and subunit vaccines for non-invasive delivery.


Assuntos
Antígenos de Histocompatibilidade Classe I/imunologia , Mucosa/imunologia , Receptores Fc/imunologia , Animais , Apresentação de Antígeno/imunologia , Complexo Antígeno-Anticorpo/imunologia , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Imunoglobulina G/imunologia , Fatores Imunológicos/imunologia
12.
Sci Transl Med ; 12(565)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33055243

RESUMO

Needle-free uptake across mucosal barriers is a preferred route for delivery of biologics, but the efficiency of unassisted transmucosal transport is poor. To make administration and therapy efficient and convenient, strategies for the delivery of biologics must enhance both transcellular delivery and plasma half-life. We found that human albumin was transcytosed efficiently across polarized human epithelial cells by a mechanism that depends on the neonatal Fc receptor (FcRn). FcRn also transported immunoglobulin G, but twofold less than albumin. We therefore designed a human albumin variant, E505Q/T527M/K573P (QMP), with improved FcRn binding, resulting in enhanced transcellular transport upon intranasal delivery and extended plasma half-life of albumin in transgenic mice expressing human FcRn. When QMP was fused to recombinant activated coagulation factor VII, the half-life of the fusion molecule increased 3.6-fold compared with the wild-type human albumin fusion, without compromising the therapeutic properties of activated factor VII. Our findings highlight QMP as a suitable carrier of protein-based biologics that may enhance plasma half-life and delivery across mucosal barriers.


Assuntos
Produtos Biológicos , Albumina Sérica Humana , Albuminas , Meia-Vida , Antígenos de Histocompatibilidade Classe I , Receptores Fc , Proteínas Recombinantes de Fusão
13.
J Exp Med ; 217(10)2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32658257

RESUMO

IgG immune complexes (ICs) promote autoimmunity through binding fragment crystallizable (Fc) γ-receptors (FcγRs). Of these, the highly prevalent FcγRIIa (CD32a) histidine (H)-131 variant (CD32aH) is strongly linked to human autoimmune diseases through unclear mechanisms. We show that, relative to the CD32a arginine (R)-131 (CD32aR) variant, CD32aH more avidly bound human (h) IgG1 IC and formed a ternary complex with the neonatal Fc receptor (FcRn) under acidic conditions. In primary human and mouse cells, both CD32a variants required FcRn to induce innate and adaptive immune responses to hIgG1 ICs, which were augmented in the setting of CD32aH. Conversely, FcRn induced responses to IgG IC independently of classical FcγR, but optimal responses required FcRn and FcγR. Finally, FcRn blockade decreased inflammation in a rheumatoid arthritis model without reducing circulating autoantibody levels, providing support for FcRn's direct role in IgG IC-associated inflammation. Thus, CD32a and FcRn coregulate IgG IC-mediated immunity in a manner favoring the CD32aH variant, providing a novel mechanism for its disease association.


Assuntos
Autoimunidade/imunologia , Antígenos de Histocompatibilidade Classe I/fisiologia , Imunoglobulina G/imunologia , Receptores Fc/fisiologia , Imunidade Adaptativa/imunologia , Animais , Artrite Reumatoide/imunologia , Suscetibilidade a Doenças , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Imunidade Inata/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Fc/imunologia , Receptores de IgG/imunologia
14.
Commun Biol ; 3(1): 181, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313072

RESUMO

Albumin has an average plasma half-life of three weeks and is thus an attractive carrier to improve the pharmacokinetics of fused therapeutics. The half-life is regulated by FcRn, a cellular receptor that protects against intracellular degradation. To tailor-design the therapeutic use of albumin, it is crucial to understand how structural alterations in albumin affect FcRn binding and transport properties. In the blood, the last C-terminal residue (L585) of albumin may be enzymatically cleaved. Here we demonstrate that removal of the L585 residue causes structural stabilization in regions of the principal FcRn binding domain and reduces receptor binding. In line with this, a short half-life of only 3.5 days was measured for cleaved albumin lacking L585 in a patient with acute pancreatitis. Thus, we reveal the structural requirement of an intact C-terminal end of albumin for a long plasma half-life, which has implications for design of albumin-based therapeutics.


Assuntos
Albumina Sérica Humana/metabolismo , Amilases/sangue , Animais , Carboxipeptidases A/sangue , Meia-Vida , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Lipase/sangue , Masculino , Camundongos Transgênicos , Pâncreas/enzimologia , Pancreatite/sangue , Pancreatite/enzimologia , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Proteólise , Receptores Fc/genética , Receptores Fc/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/genética , Relação Estrutura-Atividade
15.
Eur J Immunol ; 50(1): 142-145, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580480

RESUMO

The semi-public T-cell response towards the gluten epitope DQ2.5-glia-α2 uses a prototypic TCR encoded by the germline segments TRAV26-1 and TRBV7-2. Through mutagenesis experiments, we show that a TRAV26-1encoded recognition motif contacts the MHC ß-chain and the TCR CDR3ß loop underpinning this conserved T-cell response restricted to the prototypic TCRs.


Assuntos
Doença Celíaca/imunologia , Epitopos de Linfócito T/imunologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Motivos de Aminoácidos/imunologia , Epitopos de Linfócito T/química , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/química
16.
Front Immunol ; 10: 2049, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555278

RESUMO

Tripartite motif containing-21 (TRIM21) is a cytosolic ubiquitin ligase and antibody receptor that provides a last line of defense against invading viruses. It does so by acting as a sensor that intercepts antibody-coated viruses that have evaded extracellular neutralization and breached the cell membrane. Upon engagement of the Fc of antibodies bound to viruses, TRIM21 triggers a coordinated effector and signaling response that prevents viral replication while at the same time inducing an anti-viral cellular state. This dual effector function is tightly regulated by auto-ubiquitination and phosphorylation. Therapeutically, TRIM21 has been shown to be detrimental in adenovirus based gene therapy, while it may be favorably utilized to prevent tau aggregation in neurodegenerative disorders. In addition, TRIM21 may synergize with the complement system to block viral replication as well as transgene expression. TRIM21 can also be utilized as a research tool to deplete specific proteins in cells and zebrafish embryos. Here, we review our current biological understanding of TRIM21 in light of its versatile functions.


Assuntos
Imunidade , Ribonucleoproteínas/imunologia , Anticorpos/química , Anticorpos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Sistema Complemento/imunologia , Citoplasma/metabolismo , Engenharia Genética , Terapia Genética , Humanos , Imunidade Inata , Espaço Intracelular , Terapia de Alvo Molecular , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Transdução de Sinais
17.
Antibodies (Basel) ; 8(2)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31544838

RESUMO

Monoclonal antibodies (mAbs) are valuable as research reagents, in diagnosis and in therapy. Their high specificity, the ease in production, favorable biophysical properties and the opportunity to engineer different properties make mAbs a versatile class of biologics. mAbs targeting peptide-major histocompatibility molecule (pMHC) complexes are often referred to as "TCR-like" mAbs, as pMHC complexes are generally recognized by T-cell receptors (TCRs). Presentation of self- and non-self-derived peptide fragments on MHC molecules and subsequent activation of T cells dictate immune responses in health and disease. This includes responses to infectious agents or cancer but also aberrant responses against harmless self-peptides in autoimmune diseases. The ability of TCR-like mAbs to target specific peptides presented on MHC allows for their use to study peptide presentation or for diagnosis and therapy. This extends the scope of conventional mAbs, which are generally limited to cell-surface or soluble antigens. Herein, we review the strategies used to generate TCR-like mAbs and provide a structural comparison with the analogous TCR in pMHC binding. We further discuss their applications as research tools and therapeutic reagents in preclinical models as well as challenges and limitations associated with their use.

18.
Front Immunol ; 10: 1540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354709

RESUMO

Antibodies are essential components of an adaptive immune response. Immunoglobulin G (IgG) is the most common type of antibody found in circulation and extracellular fluids. Although IgG alone can directly protect the body from infection through the activities of its antigen binding region, the majority of IgG immune functions are mediated via proteins and receptors expressed by specialized cell subsets that bind to the fragment crystallizable (Fc) region of IgG. Fc gamma (γ) receptors (FcγR) belong to a broad family of proteins that presently include classical membrane-bound surface receptors as well as atypical intracellular receptors and cytoplasmic glycoproteins. Among the atypical FcγRs, the neonatal Fc receptor (FcRn) has increasingly gained notoriety given its intimate influence on IgG biology and its ability to also bind to albumin. FcRn functions as a recycling or transcytosis receptor that is responsible for maintaining IgG and albumin in the circulation, and bidirectionally transporting these two ligands across polarized cellular barriers. More recently, it has been appreciated that FcRn acts as an immune receptor by interacting with and facilitating antigen presentation of peptides derived from IgG immune complexes (IC). Here we review FcRn biology and focus on newer advances including how emerging FcRn-targeted therapies may affect the immune responses to IgG and IgG IC.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoglobulina G/metabolismo , Placenta/imunologia , Receptores Fc/metabolismo , Animais , Complexo Antígeno-Anticorpo/imunologia , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Tolerância Imunológica , Imunidade , Imunoglobulina G/imunologia , Gravidez , Conformação Proteica , Transporte Proteico , Receptores Fc/imunologia
19.
Cell Host Microbe ; 25(4): 617-629.e7, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30926239

RESUMO

The complement system is vital for anti-microbial defense. In the classical pathway, pathogen-bound antibody recruits the C1 complex (C1qC1r2C1s2) that initiates a cleavage cascade involving C2, C3, C4, and C5 and triggering microbial clearance. We demonstrate a C4-dependent antiviral mechanism that is independent of downstream complement components. C4 inhibits human adenovirus infection by directly inactivating the virus capsid. Rapid C4 activation and capsid deposition of cleaved C4b are catalyzed by antibodies via the classical pathway. Capsid-deposited C4b neutralizes infection independent of C2 and C3 but requires C1q antibody engagement. C4b inhibits capsid disassembly, preventing endosomal escape and cytosolic access. C4-deficient mice exhibit heightened viral burdens. Additionally, complement synergizes with the Fc receptor TRIM21 to block transduction by an adenovirus gene therapy vector but is partially restored by Fab virus shielding. These results suggest that the complement system could be altered to prevent virus infection and enhance virus gene therapy efficacy.


Assuntos
Infecções por Adenovirus Humanos/imunologia , Adenovírus Humanos/imunologia , Capsídeo/metabolismo , Complemento C4/metabolismo , Imunidade Humoral , Fatores Imunológicos/metabolismo , Inativação de Vírus , Animais , Anticorpos Antivirais/metabolismo , Linhagem Celular , Complemento C1/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Ligação Proteica
20.
Nat Nanotechnol ; 14(4): 398, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30783200

RESUMO

In the Supplementary Information file originally published with this Article, the Supplementary references 48-62 were missing; the amended file has now been uploaded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA