RESUMO
INTRODUCTION: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus (GP) is an established therapy for Parkinson's disease (PD). Novel DBS devices can record local field potential (LFP) physiomarkers from the STN or GP. While beta (13-30 Hz) and gamma (40-90 Hz) STN and GP LFP oscillations correlate with PD motor severity and with therapeutic effects of treatments, STN-GP interactions in electrophysiology in patients with PD are not well characterized. METHODS: Simultaneous bilateral STN and GP LFPs were recorded in a patient with PD who received bilateral STN-DBS and GP-DBS. Power spectra in each target and STN-GP coherence were assessed in various ON- and OFF-levodopa and DBS states, both at rest and with voluntary movement. RESULTS: OFF-levodopa and OFF-DBS, beta peaks were present at bilateral STN and GP, coincident with prominent STN-GP beta coherence. Levodopa and dual-target-DBS (simultaneous STN-DBS and GP-DBS) completely suppressed STN-GP coherence. Finely-tuned gamma (FTG) activity at half the stimulation frequency (62.5 Hz) was seen in the STN during GP-DBS at rest. To assess the effects of movement on FTG activity, we recorded LFPs during instructed movement. We observed FTG activity in bilateral GP and bilateral STN during contralateral body movements while on GP-DBS and ON-levodopa. No FTG was seen with STN-DBS or dual-target-DBS. CONCLUSION: Dual-target-DBS and levodopa suppressed STN-GP coherence. FTG throughout the basal ganglia was induced by GP-DBS in the presence of levodopa and movement. This bilateral STN-FTG and GP-FTG corresponded with the least severe bradykinesia state, suggesting a pro-kinetic role for FTG.
Assuntos
Estimulação Encefálica Profunda , Globo Pálido , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Antiparkinsonianos/uso terapêutico , Levodopa/farmacologia , Levodopa/administração & dosagem , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologiaRESUMO
Deep brain stimulation (DBS) is an effective therapy for various neurologic and neuropsychiatric disorders, involving chronic implantation of electrodes into target brain regions for electrical stimulation delivery. Despite its safety and efficacy, DBS remains an underutilized therapy. Advances in the field of DBS, including in technology, mechanistic understanding, and applications have the potential to expand access and use of DBS, while also improving clinical outcomes. Developments in DBS technology, such as MRI compatibility and bidirectional DBS systems capable of sensing neural activity while providing therapeutic stimulation, have enabled advances in our understanding of DBS mechanisms and its application. In this review, we summarize recent work exploring DBS modulation of target networks. We also cover current work focusing on improved programming and the development of novel stimulation paradigms that go beyond current standards of DBS, many of which are enabled by sensing-enabled DBS systems and have the potential to expand access to DBS.
Assuntos
Estimulação Encefálica Profunda , Encéfalo/fisiologia , Estimulação Elétrica , Imageamento por Ressonância Magnética , EletrodosRESUMO
The key protein implicated in Parkinson's disease and other synucleinopathies is α-synuclein, and a post-translationally modified form of the protein, phosphorylated at serine 129 (pS129), is a principal component in Lewy bodies, a pathological hallmark of PD. While altered proteostasis has been implicated in the etiology of Parkinson's disease, we still have a limited understanding of how α-synuclein is regulated in the nervous system. The protein quality control protein Ubiquilin-2 (UBQLN2) is known to accumulate in synucleinopathies, but whether it directly regulates α-synuclein is unknown. Using cellular and mouse models, we find that UBQLN2 decreases levels of α-synuclein, including the pS129 phosphorylated isoform. Pharmacological inhibition of the proteasome revealed that, while α-synuclein may be cleared by parallel and redundant quality control pathways, UBQLN2 preferentially targets pS129 for proteasomal degradation. Moreover, in brain tissue from human PD and transgenic mice expressing pathogenic α-synuclein (A53T), native UBQLN2 becomes more insoluble. Collectively, our studies support a role for UBQLN2 in directly regulating pathological forms of α-synuclein and indicate that UBQLN2 dysregulation in disease may contribute to α-synuclein-mediated toxicity.
Assuntos
Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Sinucleinopatias/metabolismo , Corpos de Lewy/metabolismo , Camundongos Transgênicos , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
The ubiquitin-binding proteasomal shuttle protein UBQLN2 is implicated in common neurodegenerative disorders due to its accumulation in disease-specific aggregates and, when mutated, directly causes familial frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS). Like other proteins linked to FTD/ALS, UBQLN2 undergoes phase separation to form condensates. The relationship of UBQLN2 phase separation and accumulation to neurodegeneration, however, remains uncertain. Employing biochemical, neuropathological and behavioral assays, we studied the impact of overexpressing WT or mutant UBQLN2 in the CNS of transgenic mice. Expression of UBQLN2 harboring a pathogenic mutation (P506T) elicited profound and widespread intraneuronal inclusion formation and aggregation without prominent neurodegenerative or behavioral changes. Both WT and mutant UBQLN2 formed ubiquitin- and P62-positive inclusions in neurons, supporting the view that UBQLN2 is intrinsically prone to phase separate, with the size, shape and frequency of inclusions depending on expression level and the presence or absence of a pathogenic mutation. Overexpression of WT or mutant UBQLN2 resulted in a dose-dependent decrease in levels of a key interacting chaperone, HSP70, as well as dose-dependent profound degeneration of the retina. We conclude that, at least in mice, robust aggregation of a pathogenic form of UBQLN2 is insufficient to cause neuronal loss recapitulating that of human FTD/ALS. Our results nevertheless support the view that altering the normal cellular balance of UBQLN2, whether wild type or mutant protein, has deleterious effects on cells of the CNS and retina that likely reflect perturbations in ubiquitin-dependent protein homeostasis.