Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18698, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122715

RESUMO

We discovered that knifefish (Apteronotus albifrons) during suction feeding can produce millimeter-sized cavitation bubbles and flow accelerations up to ~ 450 times the acceleration of gravity. Knifefish may use this powerful suction-induced cavitation to cause physical damage on prey hiding in narrow refuges, therefore facilitating capture.

2.
Integr Comp Biol ; 60(2): 385-396, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492136

RESUMO

Mechanistically connecting genotypes to phenotypes is a longstanding and central mission of biology. Deciphering these connections will unite questions and datasets across all scales from molecules to ecosystems. Although high-throughput sequencing has provided a rich platform on which to launch this effort, tools for deciphering mechanisms further along the genome to phenome pipeline remain limited. Machine learning approaches and other emerging computational tools hold the promise of augmenting human efforts to overcome these obstacles. This vision paper is the result of a Reintegrating Biology Workshop, bringing together the perspectives of integrative and comparative biologists to survey challenges and opportunities in cracking the genotype to phenotype code and thereby generating predictive frameworks across biological scales. Key recommendations include promoting the development of minimum "best practices" for the experimental design and collection of data; fostering sustained and long-term data repositories; promoting programs that recruit, train, and retain a diversity of talent; and providing funding to effectively support these highly cross-disciplinary efforts. We follow this discussion by highlighting a few specific transformative research opportunities that will be advanced by these efforts.


Assuntos
Big Data , Biologia Computacional/métodos , Código Genético , Genótipo , Fenótipo
3.
Artigo em Inglês | MEDLINE | ID: mdl-23612845

RESUMO

We studied prey processing in the Siamese fighting fish (Betta splendens), involving slow, easily observed head-bobbing movements, which were compared with prey processing in other aquatic feeding vertebrates. We hypothesized that head-bobbing is a unique prey-processing behaviour, which alternatively could be structurally and functionally analogous with raking in basal teleosts, or with pharyngognathy in neoteleosts. Modulation of head-bobbing was elicited by prey with different motility and toughness. Head-bobbing involved sustained mouth occlusion and pronounced cranial elevation, similar to raking. However, the hyoid and pectoral girdle were protracted, and not retracted as in both raking and pharyngognathy. High-speed videofluoroscopy of hyoid movements confirmed that head-bobbing differs from other known aquatic prey-processing behaviours. Nevertheless, head-bobbing and other prey-processing behaviours converge on a recurrent functional theme in the trophic ecology of aquatic feeding vertebrates; the use of intraoral and oropharyngeal dentition surfaces to immobilize, reduce and process relatively large, tough or motile prey. Prey processing outside the pharyngeal region has not been described for neoteleosts previously, but morphological evidence suggests that relatives of Betta might use similar processing behaviours. Thus, our results suggest that pharyngognathy did not out-compete ancestral prey-processing mechanisms completely during the evolution of neoteleosts.


Assuntos
Arcada Osseodentária/fisiologia , Perciformes/anatomia & histologia , Perciformes/fisiologia , Faringe/fisiologia , Comportamento Predatório/fisiologia , Animais , Fenômenos Biomecânicos
4.
Integr Comp Biol ; 51(2): 235-46, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21705368

RESUMO

Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement.


Assuntos
Artiodáctilos/fisiologia , Evolução Biológica , Peixes/fisiologia , Arcada Osseodentária/anatomia & histologia , Mastigação , Músculos/fisiologia , Animais , Artiodáctilos/anatomia & histologia , Eletromiografia , Peixes/anatomia & histologia , Osso Hioide/anatomia & histologia , Osso Hioide/fisiologia , Arcada Osseodentária/fisiologia , Movimento , Músculos/anatomia & histologia , Filogenia , Especificidade da Espécie
5.
J Exp Biol ; 213(11): 1868-75, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20472774

RESUMO

Intra-oral prey processing (chewing) using the mandibular jaws occurs more extensively among teleost fishes than previously documented. The lack of muscle spindles, gamma-motoneurons and periodontal afferents in fishes makes them useful for testing hypotheses regarding the relationship between these sensorimotor components and rhythmic chewing in vertebrates. Electromyography (EMG) data from the adductor mandibulae (AM) were used to quantify variation in chew cycle duration in the bowfin Amia, three osteoglossomorphs (bony-tongues), four salmonids and one esocid (pike). All species chewed prey using their oral jaw in repetitive trains of between 3 and 30 consecutive chews, a pattern that resembles cyclic chewing in amniote vertebrates. Variance in rhythmicity was compared within and between lineages using coefficients of variation and Levene's test for homogeneity of variance. These comparisons revealed that some teleosts exhibit degrees of rhythmicity that are comparable to mammalian mastication and higher than in lepidosaurs. Moreover, chew cycle durations in fishes, as in mammals, scale positively with mandible length. Chewing among basal teleosts may be rhythmic because it is stereotyped and inflexible, the result of patterned interactions between sensory feedback and a central pattern generator, because the lack of a fleshy tongue renders jaw-tongue coordination unnecessary and/or because stereotyped opening and closing movements are important for controlling fluid flow in the oral cavity.


Assuntos
Peixes/fisiologia , Mastigação/fisiologia , Animais , Comportamento Alimentar , Arcada Osseodentária/fisiologia , Periodicidade
6.
J Anat ; 214(5): 717-28, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19438765

RESUMO

The tongue-bite apparatus and its associated musculoskeletal elements of the pectoral girdle and neurocranium form the structural basis of raking, a unique prey-processing behaviour in salmonid and osteoglossomorph fishes. Using a quantitative approach, the functional osteology and myology of this system were compared between representatives of each lineage, i.e. the salmonid Salvelinus fontinalis (N = 10) and the osteoglossomorph Chitala ornata (N = 8). Divergence was found in the morphology of the novel cleithrobranchial ligament, which potentially relates to kinematic differences between the raking lineage representatives. Salvelinus had greater anatomical cross-sectional areas of the epaxial, hypaxial and protractor hyoideus muscles, whereas Chitala had greater sternohyoideus and adductor mandibulae mass. Two osteology-based biomechanical models (a third-order lever for neurocranial elevation and a modified four-bar linkage for hyoid retraction) showed divergent force/velocity priorities in the study taxa. Salvelinus maximizes both force (via powerful cranial muscles) and velocity (through mechanical amplification) during raking. In contrast, Chitala has relatively low muscle force but more efficient force transmission through both mechanisms compared with Salvelinus. It remains unclear if and how behavioural modulation and specializations in the post-cranial anatomy may affect the force/velocity trade-offs in Chitala. Further studies of tongue-bite apparatus morphology and biomechanics in a broader species range may help to clarify the role that osteology and myology play in the evolution of behavioural diversity.


Assuntos
Comportamento Alimentar/fisiologia , Peixes/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Salmonidae/anatomia & histologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Força de Mordida , Peixes/fisiologia , Arcada Osseodentária/fisiologia , Salmonidae/fisiologia , Especificidade da Espécie , Estatística como Assunto , Truta/anatomia & histologia , Truta/fisiologia
7.
J Exp Biol ; 211(Pt 21): 3378-91, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18931311

RESUMO

A tongue-bite apparatus (TBA) governs raking behaviors in two major and unrelated teleost lineages, the osteoglossomorph and salmoniform fishes. We present data on comparative morphology and kinematics from two representative species, the rainbow trout (Oncorhynchus mykiss) and the Australian arowana (Scleropages jardinii), which suggest that both the TBA and raking are convergently derived in these lineages. Similar TBA morphologies were present, except for differences in TBA dentition and shape of the novel cleithrobranchial ligament (CBL), which is arc-shaped in O. mykiss and straight in S. jardinii. Eight kinematic variables were used to quantify motion magnitude and maximum-timing in the kinematic input mechanisms of the TBA. Five variables differed inter-specifically (pectoral girdle retraction magnitude and timing, cranial and hyoid elevation and gape-distance timing), yet an incomplete taxon separation across multivariate kinematic space demonstrated an overall similarity in raking behavior. An outgroup analysis using bowfin (Amia calva) and pickerel (Esox americanus) to compare kinematics of raking with chewing and prey-capture provided robust quantitative evidence of raking being a convergently derived behavior. Support was also found for the notion that raking more likely evolved from the strike, a functionally distinct behavior, than from chewing, an alternative prey-processing behavior. Based on raking kinematic and muscle-activity data, we propose biomechanical models of the three input mechanisms that govern kinematics of the basihyal output mechanism during the raking power stroke: (1) cranial elevation protracts the upper TBA jaw from the lower (basihyal) TBA jaw; (2) basihyal retraction is caused directly by contraction of the sternohyoideus (SH); (3) hypaxial shortening, relayed via the pectoral girdle and SH-CBL complex, is an indirect basihyal retraction mechanism modeled as a four-bar linkage. These models will aid future analyses mapping structural and functional traits to the evolution of behaviors.


Assuntos
Peixes/anatomia & histologia , Arcada Osseodentária/anatomia & histologia , Oncorhynchus mykiss/anatomia & histologia , Animais , Evolução Biológica , Fenômenos Biomecânicos , Comportamento Alimentar , Processamento de Imagem Assistida por Computador , Modelos Biológicos , Comportamento Predatório , Especificidade da Espécie , Gravação em Vídeo
8.
J Exp Biol ; 211(Pt 6): 989-99, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18310124

RESUMO

Behavioural differences across prey-capture and processing mechanisms may be governed by coupled or uncoupled feeding systems. Osteoglossomorph and salmonid fishes process prey in a convergently evolved tongue-bite apparatus (TBA), which is musculoskeletally coupled with the primary oral jaws. Altered muscle-activity patterns (MAPs) in these coupled jaw systems could be associated with the independent origin of a novel raking behaviour in these unrelated lineages. Substantial MAP changes in the evolution of novel behaviours have rarely been quantified so we examined MAP differences across strikes, chewing and rakes in a derived raking salmonid, the rainbow trout, Oncorhynchus mykiss. Electromyography, including activity onset timing, duration, mean amplitude and integrated area from five feeding muscles revealed significant differences between behaviour-specific MAPs. Specifically, early activity onset in the protractor hyoideus and adductor mandibularis muscles characterised raking, congruent with a recent biomechanical model of the component-mechanisms driving the raking preparatory and power-stroke phases. Oncorhynchus raking MAPs were then compared with a phylogenetically derived osteoglossomorph representative, the Australian arowana, Scleropages jardinii. In both taxa, early onset of protractor hyoideus and adductor mandibularis activity characterised the raking preparatory phase, indicating a convergently derived MAP, while more subtle inter-lineage divergence in raking MAPs resulted from onset-timing and duration differences in sternohyoideus and hypaxialis activity. Convergent TBA morphologies are thus powered by convergently derived MAPs, a phenomenon not previously demonstrated in feeding mechanisms. Between lineages, differences in TBA morphology and associated differences in the functional coupling of jaw systems appear to be important factors in shaping the diversification of raking behaviours.


Assuntos
Peixes/fisiologia , Animais , Comportamento Animal , Eletromiografia , Comportamento Alimentar , Peixes/anatomia & histologia , Músculos/fisiologia , Oncorhynchus mykiss/anatomia & histologia , Oncorhynchus mykiss/fisiologia , Comportamento Predatório , Especificidade da Espécie
9.
Integr Comp Biol ; 48(2): 246-60, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21669788

RESUMO

Quantification of anatomical and physiological characteristics of the function of a musculoskeletal system may yield a detailed understanding of how the organizational levels of morphology, biomechanics, kinematics, and muscle activity patterns (MAPs) influence behavioral diversity. Using separate analyses of these organizational levels in representative study taxa, we sought patterns of congruence in how organizational levels drive behavioral modulation in a novel raking prey-processing behavior found in teleosts belonging to two evolutionarily distinct lineages. Biomechanically divergent prey (elusive, robust goldfish and sedentary, malleable earthworms) were fed to knifefish, Chitala ornata (Osteoglossomorpha) and brook trout, Salvelinus fontinalis (Salmoniformes). Electromyography recorded MAPs from the hyoid protractor, jaw adductor, sternohyoideus, epaxialis, and hypaxialis musculature, while sonomicrometry sampled deep basihyal kinesis and contractile length dynamics in the basihyal protractor and retractor muscles. Syntheses of our results with recent analyses of cranial morphology and raking kinematics showed that raking in Salvelinus relies on an elongated cranial out lever, extensive cranial elevation and a curved cleithrobranchial ligament (CBL), and that both raking MAPs and kinematics remain entirely unmodulated-a highly unusual trait, particularly among feeding generalists. Chitala had a shorter CBL and a raking power stroke involving increased retraction of the elongated pectoral girdle during raking on goldfish. The raking MAP was also modulated in Chitala, involving an extensive overlap between muscle activity of the preparatory and power stroke phases, driven by shifts in hypaxial timing and recruitment of the hyoid protractor muscle. Sonomicrometry revealed that the protractor hyoideus muscle stored energy from retraction of the pectoral girdle for ca. 5-20 ms after onset of the power stroke and then hyper-extended. This mechanism of elastic recoil in Chitala, which amplifies retraction of the basihyal during raking on goldfish without a significant increase in recruitment of the hypaxialis, suggests a unique mechanism of modulation based on performance-enhancing changes in the design and function of the musculoskeletal system.

10.
J Exp Biol ; 205(Pt 22): 3445-57, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12364398

RESUMO

Suction feeding in fishes is the result of a highly coordinated explosive expansion of the buccal cavity that results in a rapid drop in pressure. Prey are drawn into the mouth by a flow of water that is generated by this expansion. At a gross level it is clear that the expansion of the buccal cavity is responsible for the drop in pressure. However, attempts using high-speed video recordings to demonstrate a tight link between prey capture kinematics and suction pressure have met with limited success. In a study with largemouth bass Micropterus salmoides, we adopted a new technique for studying kinematics, sonomicrometry, to transduce the movement of skeletal elements of the head during feeding, and synchronized pressure recordings at a sampling rate of 500 Hz. From the positional relationships of six piezoelectric crystals we monitored the internal movements of the buccal cavity and mouth in both mid-sagittal and transverse planes. We found that peak subambient pressure was reached very early in the kinematic expansion of the buccal cavity, occurring at the time when the rate of percentage change in buccal volume was at its peak. Using multiple regression analyses we were consistently able to account for over 90%, and in the best model 99%, of the variation in buccal pressure among strikes using kinematic variables. Sonomicrometry shows great promise as a method for documenting movements of biological structures that are not clearly visible in the external view provided by film and video recordings.


Assuntos
Bass/fisiologia , Bochecha/fisiologia , Comportamento Alimentar , Comportamento Predatório , Animais , Fenômenos Biomecânicos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA