Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(47): 45096-45108, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38046310

RESUMO

The comparative study of photocatalytic gold recovery from cyanide-based gold plating solution was explored via commercial and hydrothermally synthesized ZnO nanoparticles (NPs). The effects of hydrothermal temperatures on the properties and photocatalytic activities of synthesized ZnO NPs were investigated. In addition, the effects of operating parameters including types of hole scavenger, concentrations of the best hole scavenger, the initial pH of wastewater, and photocatalyst dosages were examined. The obtained results demonstrated that the commercial ZnO NPs exhibited a higher photocatalytic activity for gold recovery than that of the synthesized ones owing to their good crystal quality and the presence of non-lattice zinc ions and appropriate non-lattice oxygen ions. Via the commercial ZnO NPs, the gold ions were almost completely recovered from the cyanide-based gold plating effluent within 7 h at an initial pH of 11.0 in the presence of 10 vol % C2H5OH and 1.0 g/L of photocatalyst loading with a pseudo-first-order rate constant of 0.2637 h-1. Finally, the resultant gold-decorated ZnO NPs exhibited a higher photocatalytic property for color reduction from industrial wastewater and antibacterial activity than that of fresh ZnO NPs. The results obtained in this study possess benefits and pave the way for waste remediation and management for the plating industries.

2.
Sci Rep ; 13(1): 22752, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123788

RESUMO

Discharging the gold-contained wastewater is an economic loss. In this work, a set of ZnO/WO3 was facile synthesized by hydrothermal method in order to recover gold from the industrial cyanide-based gold plating wastewater by photocatalytic process. Effect of ZnO contents coupled with WO3 was first explored. Then, effects of operating condition including initial pH of wastewater, type of hole scavenger, concentration of the best hole scavenger and photocatalyst dose were explored. A series of experimental results demonstrated that the ZnO/WO3 nanocomposite with 5 wt% ZnO (Z5.0/WO3) depicted the highest photocatalytic activity for gold recovery due to the synergetic effect of oxygen vacancies, a well-constructed ZnO/WO3 heterostructure and an appropriate band position alignment with respect to the redox potentials of [Au(CN)2]- and hole scavengers. Via this ZnO/WO3 nanocomposite, approximately 99.5% of gold ions was recovered within 5 h using light intensity of 3.57 mW/cm2, catalyst dose of 2.0 g/L, ethanol concentration of 20 vol% and initial pH of wastewater of 11.2. In addition, high stability and reusability were observed with the best nanocomposite even at the 5th reuse. This work provides the guidance and pave the way for designing the ZnO/WO3 nanocomposite for precious metal recovery from a real industrial wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA