Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 15(11): 2182-2197, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38726817

RESUMO

Aggregative α-synuclein and incurring oxidative stress are pivotal cascading events, leading to dopaminergic (DAergic) neuronal loss and contributing to clinical manifestations of Parkinson's disease (PD). Our previous study demonstrated that 2-butoxytetrahydrofuran (2-BTHF), isolated from Holothuria scabra (H. scabra), could inhibit amyloid-ß aggregation and its ensuing toxicity, which leads to Alzheimer's disease. In the present study, we found that 2-BTHF also attenuated the aggregative and oxidative activities of α-synuclein and lessened its toxicity in a transgenic Caenorhabditis elegans (C. elegans) PD model. Such worms treated with 100 µM of 2-BTHF showed substantial reductions in α-synuclein accumulation and DAergic neurodegeneration. Mechanistically, 2-BTHF, at this concentration, significantly decreased aggregation of monomeric α-synuclein and restored locomotion and dopamine-dependent behaviors. Molecular docking exhibited potential bindings of 2-BTHF to HSF-1 and DAF-16 transcription factors. Additionally, 2-BTHF significantly increased the mRNA transcripts of genes encoding proteins involved in proteostasis, including the molecular chaperones hsp-16.2 and hsp-16.49, the ubiquitination/SUMOylation-related ubc-9 gene, and the autophagy-related genes atg-7 and lgg-1. Transcriptomic profiling revealed an additional mechanism of 2-BTHF in α-synuclein-expressing worms, which showed upregulation of PPAR signaling cascades that mediated fatty acid metabolism. 2-BTHF significantly restored lipid deposition, upregulated the fat-7 gene, and enhanced gcs-1-mediated glutathione synthesis in the C. elegans PD model. Taken together, this study demonstrated that 2-BTHF could abrogate aggregative and oxidative properties of α-synuclein and attenuate its toxicity, thus providing a possible therapeutic application for the treatment of α-synuclein-induced PD.


Assuntos
Animais Geneticamente Modificados , Caenorhabditis elegans , Modelos Animais de Doenças , Furanos , Holothuria , Estresse Oxidativo , alfa-Sinucleína , Animais , Caenorhabditis elegans/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Furanos/farmacologia , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Simulação de Acoplamento Molecular , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos
2.
ACS Omega ; 9(6): 6945-6954, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371837

RESUMO

Cry5B, a crystal protein produced by Bacillus thuringiensis (Bt), is a bionematicide with potent nematicidal activity against various plant-parasitic and free-living nematodes. This protein, however, is susceptible to destruction by ultraviolet light, proteolytic enzymes, and high temperatures. This study aims to produce Cry5B protein for bionematicidal use and improve its stability and nematicidal efficacy by loading it intoArthrobotrys oligospora-mediated sulfur nanoparticles (AO-SNPs). Based on the mortality assay, the Cry5B protein exhibited dose-dependent nematicidal activity against the model organismCaenorhabditis elegans. The nematicidal activity, thermal stability, and pathogenic effects of Cry5B-loaded AO-SNPs (Cry5B-SNPs) were compared to those of free Cry5B. After 3 h of exposure to heat at 60 °C, Cry5B-SNPs had greater nematicidal activity than free Cry5B protein, indicating the effective formulation of Cry5B-SNPs that could be used as an alternative to current nematicide delivery strategies.

3.
Mar Drugs ; 21(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36976190

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease which is still incurable. Sea cucumber-derived compounds have been reported to be promising candidate drugs for treating age-related neurological disorders. The present study evaluated the beneficial effects of the Holothuria leucospilota (H. leucospilota)-derived compound 3 isolated from ethyl acetate fraction (HLEA-P3) using Caenorhabditis elegans PD models. HLEA-P3 (1 to 50 µg/mL) restored the viability of dopaminergic neurons. Surprisingly, 5 and 25 µg/mL HLEA-P3 improved dopamine-dependent behaviors, reduced oxidative stress and prolonged lifespan of PD worms induced by neurotoxin 6-hydroxydopamine (6-OHDA). Additionally, HLEA-P3 (5 to 50 µg/mL) decreased α-synuclein aggregation. Particularly, 5 and 25 µg/mL HLEA-P3 improved locomotion, reduced lipid accumulation and extended lifespan of transgenic C. elegans strain NL5901. Gene expression analysis revealed that treatment with 5 and 25 µg/mL HLEA-P3 could upregulate the genes encoding antioxidant enzymes (gst-4, gst-10 and gcs-1) and autophagic mediators (bec-1 and atg-7) and downregulate the fatty acid desaturase gene (fat-5). These findings explained the molecular mechanism of HLEA-P3-mediated protection against PD-like pathologies. The chemical characterization elucidated that HLEA-P3 is palmitic acid. Taken together, these findings revealed the anti-Parkinson effects of H. leucospilota-derived palmitic acid in 6-OHDA induced- and α-synuclein-based models of PD which might be useful in nutritional therapy for treating PD.


Assuntos
Holothuria , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Doença de Parkinson/metabolismo , Caenorhabditis elegans/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Holothuria/metabolismo , Ácido Palmítico/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Oxidopamina , Animais Geneticamente Modificados , Neurônios Dopaminérgicos , Modelos Animais de Doenças
4.
Front Pharmacol ; 13: 1004568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582526

RESUMO

Sea cucumbers are marine organism that have long been used for food and traditional medicine in Asian countries. Recently, we have shown that ethyl acetate fraction (HLEA) of the crude extract of the black sea cucumber, Holothuria leucospilota, could alleviate Parkinsonism in Caenorhabditis elegans PD models. In this study, we found that the effective neuroprotective activity is attributed to HLEA-P1 compound chemically isolated and identified in H. leucospilota ethyl acetate. We reported here that HLEA-P1 could attenuate DAergic neurodegeneration, improve DAergic-dependent behaviors, reduce oxidative stress in 6-OHDA-induced C. elegans. In addition, HLEA-P1 reduced α-synuclein aggregation, improved behavior deficit and recovered lipid deposition in transgenic C. elegans overexpressing α-synuclein. We also found that HLEA-P1 activates nuclear localization of DAF-16 transcription factor of insulin/IGF-1 signaling (IIS) pathway. Treatment with 25 µg/ml of HLEA-P1 upregulated transcriptional activity of DAF-16 target genes including anti-oxidant genes (such as sod-3) and small heat shock proteins (such as hsp16.1, hsp16.2, and hsp12.6) in 6-OHDA-induced worms. In α-synuclein-overexpressed C. elegans strain, treatment with 5 µg/ml of HLEA-P1 significantly activated mRNA expression of sod-3 and hsp16.2. Chemical analysis demonstrated that HLEA-P1 compound is decanoic acid/capric acid. Taken together, our findings revealed that decanoic acid isolated from H. leucospilota exerts anti-Parkinson effect in C. elegans PD models by partly modulating IIS/DAF-16 pathway.

5.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36355546

RESUMO

Extracts from a sea cucumber, Holothuria scabra, have been shown to exhibit various pharmacological properties including anti-oxidation, anti-aging, anti-cancer, and anti-neurodegeneration. Furthermore, certain purified compounds from H. scabra displayed neuroprotective effects against Parkinson's and Alzheimer's diseases. Therefore, in the present study, we further examined the anti-aging activity of purified H. scabra compounds in a Caenorhabditis elegans model. Five compounds were isolated from ethyl acetate and butanol fractions of the body wall of H. scabra and characterized as diterpene glycosides (holothuria A and B), palmitic acid, bis (2-ethylhexyl) phthalate (DEHP), and 2-butoxytetrahydrofuran (2-BTHF). Longevity assays revealed that 2-BTHF and palmitic acid could significantly extend lifespan of wild type C. elegans. Moreover, 2-BTHF and palmitic acid were able to enhance resistance to paraquat-induced oxidative stress and thermal stress. By testing the compounds' effects on longevity pathways, it was shown that 2-BTHF and palmitic acid could not extend lifespans of daf-16, age-1, sir-2.1, jnk-1, and skn-1 mutant worms, indicating that these compounds exerted their actions through these genes in extending the lifespan of C. elegans. These compounds induced DAF-16::GFP nuclear translocation and upregulated the expressions of daf-16, hsp-16.2, sod-3 mRNA and SOD-3::GFP. Moreover, they also elevated protein and mRNA expressions of GST-4, which is a downstream target of the SKN-1 transcription factor. Taken together, the study demonstrated the anti-aging activities of 2-BTHF and palmitic acid from H. scabra were mediated via DAF-16/FOXO insulin/IGF and SKN-1/NRF2 signaling pathways.

6.
Molecules ; 26(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443430

RESUMO

Parkinson's disease (PD) is a currently incurable neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta and α-synuclein aggregation. Accumulated evidence indicates that the saponins, especially from ginseng, have neuroprotective effects against neurodegenerative disorders. Interestingly, saponin can also be found in marine organisms such as the sea cucumber, but little is known about its effect in neurodegenerative disease, including PD. In this study, we investigated the anti-Parkinson effects of frondoside A (FA) from Cucumaria frondosa and ginsenoside Rg3 (Rg3) from Panax notoginseng in C. elegans PD model. Both saponins were tested for toxicity and optimal concentration by food clearance assay and used to treat 6-OHDA-induced BZ555 and transgenic α-synuclein NL5901 strains in C. elegans. Treatment with FA and Rg3 significantly attenuated DAergic neurodegeneration induced by 6-OHDA in BZ555 strain, improved basal slowing rate, and prolonged lifespan in the 6-OHDA-induced wild-type strain with downregulation of the apoptosis mediators, egl-1 and ced-3, and upregulation of sod-3 and cat-2. Interestingly, only FA reduced α-synuclein aggregation, rescued lifespan in NL5901, and upregulated the protein degradation regulators, including ubh-4, hsf-1, hsp-16.1 and hsp-16.2. This study indicates that both FA and Rg3 possess beneficial effects in rescuing DAergic neurodegeneration in the 6-OHDA-induced C. elegans model through suppressing apoptosis mediators and stimulating antioxidant enzymes. In addition, FA could attenuate α-synuclein aggregation through the protein degradation process.


Assuntos
Caenorhabditis elegans/fisiologia , Ginsenosídeos/farmacologia , Glicosídeos/farmacologia , Doença de Parkinson/patologia , Triterpenos/farmacologia , Animais , Animais Geneticamente Modificados , Apoptose/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/química , Ginsenosídeos/toxicidade , Glicosídeos/química , Glicosídeos/toxicidade , Longevidade/efeitos dos fármacos , Degeneração Neural/complicações , Degeneração Neural/patologia , Oxidopamina , Doença de Parkinson/complicações , Proteólise/efeitos dos fármacos , Triterpenos/química , Triterpenos/toxicidade , alfa-Sinucleína/metabolismo
7.
Environ Sci Pollut Res Int ; 24(23): 19104-19113, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28660513

RESUMO

The phytoaccumulation ability of duckweed Spirodela polyrhiza on manganese (Mn) and chromium (Cr) was assessed by exposing the plant to various concentrations of single or dual metals (5-70 mg L-1 Mn, 2-12 mg L-1 Cr(VI)) under laboratory conditions. The results showed that S. polyrhiza can tolerate Mn at high concentrations of up to 70 mg L-1, and its growth rate was barely affected by Mn. The effects of Cr on S. polyrhiza growth were dose-dependent, and the growth was completely inhibited in the presence of 12 mg L-1 Cr. Analysis of metal content in the plant biomass revealed a high accumulation of Mn (up to 15.75 mg per g of duckweed dry weight). The Cr bioaccumulation (from below detection limit to 2.85 mg Cr (11.84 mg Cr2O72-) per g of duckweed dry weight) increased with cultivation time and metal concentration in the medium. Further study with the concurrence of Mn and Cr showed increased toxicity to plant growth and photosynthesis. The metal accumulations in the dual metal treatments were also significantly decreased as compared to the single metal treatments. Nevertheless, the phytoaccumulation of these two metals in S. polyrhiza in the dual metal treatments were still comparable to or higher than in previous reports. Thus, it was concluded that duckweed S. polyrhiza has the potential to be used as a phytoremediator in aquatic environments for Mn and Cr removal.


Assuntos
Araceae/efeitos dos fármacos , Biodegradação Ambiental , Cromo/farmacologia , Manganês/farmacologia , Poluição Química da Água , Biomassa , Íons , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA