Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunity ; 56(12): 2755-2772.e8, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039967

RESUMO

In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.


Assuntos
Armadilhas Extracelulares , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Citocinas , Armadilhas Extracelulares/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 120(33): e2303010120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549258

RESUMO

The regulation of gene expression through histone posttranslational modifications plays a crucial role in breast cancer progression. However, the molecular mechanisms underlying the contribution of histone modification to tumor initiation remain unclear. To gain a deeper understanding of the role of the histone modifier Enhancer of Zeste homology 2 (Ezh2) in the early stages of mammary tumor progression, we employed an inducible mammary organoid system bearing conditional Ezh2 alleles that faithfully recapitulates key events of luminal B breast cancer initiation. We showed that the loss of Ezh2 severely impairs oncogene-induced organoid growth, with Ezh2-deficient organoids maintaining a polarized epithelial phenotype. Transcriptomic profiling showed that Ezh2-deficient mammary epithelial cells up-regulated the expression of negative regulators of Wnt signaling and down-regulated genes involved in mTORC1 (mechanistic target of rapamycin complex 1) signaling. We identified Sfrp1, a Wnt signaling suppressor, as an Ezh2 target gene that is derepressed and expressed in Ezh2-deficient epithelium. Furthermore, an analysis of breast cancer data revealed that Sfrp1 expression was associated with favorable clinical outcomes in luminal B breast cancer patients. Finally, we confirmed that targeting Ezh2 impairs mTORC1 activity through an indirect mechanism that up-regulates the expression of the tumor suppressor Pten. These findings indicate that Ezh2 integrates the mTORC1 and Wnt signaling pathways during early mammary tumor progression, arguing that inhibiting Ezh2 or therapeutically targeting Ezh2-dependent programs could be beneficial for the treatment of early-stage luminal B breast cancer.


Assuntos
Histonas , Complexo Repressor Polycomb 2 , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Via de Sinalização Wnt/genética
3.
Cancer Immunol Res ; 11(9): 1184-1202, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311021

RESUMO

The tumor-immune microenvironment (TIME) is a critical determinant of therapeutic response. However, the mechanisms regulating its modulation are not fully understood. HER2Δ16, an oncogenic splice variant of the HER2, has been implicated in breast cancer and other tumor types as a driver of tumorigenesis and metastasis. Nevertheless, the underlying mechanisms of HER2Δ16-mediated oncogenicity remain poorly understood. Here, we show that HER2∆16 expression is not exclusive to the clinically HER2+ subtype and associates with a poor clinical outcome in breast cancer. To understand how HER2 variants modulated the tumor microenvironment, we generated transgenic mouse models expressing either proto-oncogenic HER2 or HER2Δ16 in the mammary epithelium. We found that HER2∆16 tumors were immune cold, characterized by low immune infiltrate and an altered cytokine profile. Using an epithelial cell surface proteomic approach, we identified ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) as a functional regulator of the immune cold microenvironment. We generated a knock-in model of HER2Δ16 under the endogenous promoter to understand the role of Enpp1 in aggressive HER2+ breast cancer. Knockdown of Enpp1 in HER2Δ16-derived tumor cells resulted in decreased tumor growth, which correlated with increased T-cell infiltration. These findings suggest that HER2Δ16-dependent Enpp1 activation associates with aggressive HER2+ breast cancer through its immune modulatory function. Our study provides a better understanding of the mechanisms underlying HER2Δ16-mediated oncogenicity and highlights ENPP1 as a potential therapeutic target in aggressive HER2+ breast cancer.


Assuntos
Neoplasias , Receptor ErbB-2 , Animais , Camundongos , Linhagem Celular Tumoral , Camundongos Transgênicos , Diester Fosfórico Hidrolases/genética , Proteômica , Pirofosfatases/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
4.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36795481

RESUMO

Activation of the tyrosine kinase c-Src promotes breast cancer progression and poor outcomes, yet the underlying mechanisms are incompletely understood. Here, we have shown that deletion of c-Src in a genetically engineered model mimicking the luminal B molecular subtype of breast cancer abrogated the activity of forkhead box M1 (FOXM1), a master transcriptional regulator of the cell cycle. We determined that c-Src phosphorylated FOXM1 on 2 tyrosine residues to stimulate its nuclear localization and target gene expression. These included key regulators of G2/M cell-cycle progression as well as c-Src itself, forming a positive feedback loop that drove proliferation in genetically engineered and patient-derived models of luminal B-like breast cancer. Using genetic approaches and small molecules that destabilize the FOXM1 protein, we found that targeting this mechanism induced G2/M cell-cycle arrest and apoptosis, blocked tumor progression, and impaired metastasis. We identified a positive correlation between FOXM1 and c-Src expression in human breast cancer and show that the expression of FOXM1 target genes predicts poor outcomes and associates with the luminal B subtype, which responds poorly to currently approved therapies. These findings revealed a regulatory network centered on c-Src and FOXM1 that is a targetable vulnerability in aggressive luminal breast cancers.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/metabolismo , Proliferação de Células , Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica
5.
Commun Biol ; 5(1): 955, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097051

RESUMO

Functional oncogenic links between ErbB2 and ERRα in HER2+ breast cancer patients support a therapeutic benefit of co-targeted therapies. However, ErbB2 and ERRα also play key roles in heart physiology, and this approach could pose a potential liability to cardiovascular health. Herein, using integrated phosphoproteomic, transcriptomic and metabolic profiling, we uncovered molecular mechanisms associated with the adverse remodeling of cardiac functions in mice with combined attenuation of ErbB2 and ERRα activity. Genetic disruption of both effectors results in profound effects on cardiomyocyte architecture, inflammatory response and metabolism, the latter leading to a decrease in fatty acyl-carnitine species further increasing the reliance on glucose as a metabolic fuel, a hallmark of failing hearts. Furthermore, integrated omics signatures of ERRα loss-of-function and doxorubicin treatment exhibit common features of chemotherapeutic cardiotoxicity. These findings thus reveal potential cardiovascular risks in discrete combination therapies in the treatment of breast and other cancers.


Assuntos
Receptores de Estrogênio , Remodelação Ventricular , Animais , Doxorrubicina/farmacologia , Camundongos , Miócitos Cardíacos/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
6.
Oncogene ; 41(25): 3445-3451, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35538223

RESUMO

p110α is a catalytic subunit of phosphoinositide 3-kinase (PI3K), a major downstream effector of receptor tyrosine kinase ErbB2, that is amplified and overexpressed in 20-30% of breast cancers, 40% of which have an activating mutation in p110α. Despite the high frequency of PIK3CA gain-of-function mutations, their prognostic value is controversial. Here, we employ a knock-in transgenic strategy to restrict the expression of an activated form of ErbB2 and p110α kinase domain mutation (p110αHR) in the mammary epithelium. Physiological levels of transgene expression under the control of their endogenous promoters did not result in a major synergistic effect. However, tumors arising in ErbB2/p110αHR bi-genic strain metastasized to the lung with significantly reduced capacity compared to tumors expressing ErbB2 alone. The reduced metastasis was further associated with retention of the myoepithelial layer reminiscent of ductal carcinoma in situ (DCIS), a non-invasive stage of human breast cancer. Molecular and biochemical analyses revealed that these poorly metastatic tumors exhibited a significant decrease in phospho-myosin light chain 2 (MLC2) associated with cellular contractility and migration. Examination of human samples for MLC2 activity revealed a progressive increase in cellular contractility between non-invasive DCIS and invasive ductal carcinoma. Collectively, these data argue that p110αHR mutation attenuates metastatic behavior in the context of ErbB2-driven breast cancer.


Assuntos
Neoplasias da Mama , Carcinoma Intraductal não Infiltrante , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Feminino , Humanos , Mutação , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptor ErbB-2/genética
7.
Oncogene ; 41(4): 527-537, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782719

RESUMO

The molecular and cellular mechanisms underlying mammary tumour dormancy and cancer recurrence are unclear and remain to be elucidated. Here, we report that mammary epithelial-specific disruption of ß1 integrin in a murine model of Luminal B human breast cancer drastically impairs tumour growth with proliferation block, apoptosis induction and cellular senescence. ß1 integrin-deficient dormant lesions show activation of the tumour suppressor p53, and tumours that circumvent dormancy possess p53 mutation analogous to those in human disease. We further demonstrate that mammary epithelial deletion of p53 in ß1 integrin-deficient mice fully rescues tumour dormancy and bypasses cellular senescence. Additionally, recurrent ß1 integrin-deficient tumours exhibit fibrosis with increased cancer-associated fibroblast infiltration and extracellular matrix deposition, absent in fast-growing ß1 integrin/p53-deficient lesions. Taken together, these observations argue that ß1 integrin modulates p53-dependent cellular senescence resulting in tumour dormancy and that pro-tumourigenic stromal cues and intrinsic genetic mutation are required for dormancy exit.


Assuntos
Neoplasias da Mama/genética , Integrina beta1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Microambiente Tumoral
8.
EMBO Mol Med ; 13(7): e13591, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34096686

RESUMO

Cachexia syndrome develops in patients with diseases such as cancer and sepsis and is characterized by progressive muscle wasting. While iNOS is one of the main effectors of cachexia, its mechanism of action and whether it could be targeted for therapy remains unexplored. Here, we show that iNOS knockout mice and mice treated with the clinically tested iNOS inhibitor GW274150 are protected against muscle wasting in models of both septic and cancer cachexia. We demonstrate that iNOS triggers muscle wasting by disrupting mitochondrial content, morphology, and energy production processes such as the TCA cycle and acylcarnitine transport. Notably, iNOS inhibits oxidative phosphorylation through impairment of complexes II and IV of the electron transport chain and reduces ATP production, leading to energetic stress, activation of AMPK, suppression of mTOR, and, ultimately, muscle atrophy. Importantly, all these effects were reversed by GW274150. Therefore, our data establish how iNOS induces muscle wasting under cachectic conditions and provide a proof of principle for the repurposing of iNOS inhibitors, such as GW274150 for the treatment of cachexia.


Assuntos
Caquexia , Neoplasias , Animais , Humanos , Camundongos , Mitocôndrias , Músculos , Atrofia Muscular
9.
Cell Rep ; 29(2): 249-257.e8, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597089

RESUMO

Monoclonal antibodies (mAbs) targeting the oncogenic receptor tyrosine kinase ERBB2/HER2, such as Trastuzumab, are the standard of care therapy for breast cancers driven by ERBB2 overexpression and activation. However, a substantial proportion of patients exhibit de novo resistance. Here, by comparing matched Trastuzumab-naive and post-treatment patient samples from a neoadjuvant trial, we link resistance with elevation of H3K27me3, a repressive histone modification catalyzed by polycomb repressor complex 2 (PRC2). In ErbB2+ breast cancer models, PRC2 silences endogenous retroviruses (ERVs) to suppress anti-tumor type-I interferon (IFN) responses. In patients, elevated H3K27me3 in tumor cells following Trastuzumab treatment correlates with suppression of interferon-driven viral defense gene expression signatures and poor response. Using an immunocompetent model, we provide evidence that EZH2 inhibitors promote interferon-driven immune responses that enhance the efficacy of anti-ErbB2 mAbs, suggesting the potential clinical benefit of epigenomic reprogramming by H3K27me3 depletion in Trastuzumab-resistant disease.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Terapia de Alvo Molecular , Receptor ErbB-2/metabolismo , Adulto , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Interferon Tipo I/metabolismo , Metilação , Camundongos , Modelos Biológicos , Complexo Repressor Polycomb 2/metabolismo , Retroelementos/genética , Trastuzumab/uso terapêutico , Regulação para Cima
10.
Nat Commun ; 10(1): 2901, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263101

RESUMO

Dysregulation of histone modifications promotes carcinogenesis by altering transcription. Breast cancers frequently overexpress the histone methyltransferase EZH2, the catalytic subunit of Polycomb Repressor Complex 2 (PRC2). However, the role of EZH2 in this setting is unclear due to the context-dependent functions of PRC2 and the heterogeneity of breast cancer. Moreover, the mechanisms underlying PRC2 overexpression in cancer are obscure. Here, using multiple models of breast cancer driven by the oncogene ErbB2, we show that the tyrosine kinase c-Src links energy sufficiency with PRC2 overexpression via control of mRNA translation. By stimulating mitochondrial ATP production, c-Src suppresses energy stress, permitting sustained activation of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which increases the translation of mRNAs encoding the PRC2 subunits Ezh2 and Suz12. We show that Ezh2 overexpression and activity are pivotal in ErbB2-mediated mammary tumourigenesis. These results reveal the hitherto unknown c-Src/mTORC1/PRC2 axis, which is essential for ErbB2-driven carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Epigênese Genética , Complexo Repressor Polycomb 2/genética , Receptor ErbB-2/metabolismo , Quinases da Família src/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Animais , Neoplasias da Mama/patologia , Proteína Tirosina Quinase CSK , Carcinogênese , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Biossíntese de Proteínas , Receptor ErbB-2/genética , Quinases da Família src/genética
11.
Proc Natl Acad Sci U S A ; 114(5): E707-E716, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096336

RESUMO

Aberrant activation of ß-catenin through its activity as a transcription factor has been observed in a large proportion of human malignancies. Despite the improved understanding of the ß-catenin signaling pathway over the past three decades, attempts to develop therapies targeting ß-catenin remain challenging, and none of these targeted therapies have advanced to the clinic. In this study, we show that part of the challenge in antagonizing ß-catenin is caused by its dual functionality as a cell adhesion molecule and a signaling molecule. In a mouse model of basal ErbB2 receptor tyrosine kinase 2 (ErbB2)-positive breast cancer (ErbB2KI), which exhibits aberrant ß-catenin nuclear signaling, ß-catenin haploinsufficiency induced aggressive tumor formation and metastasis by promoting the disruption of adherens junctions, dedifferentiation, and an epithelial to mesenchymal transition (EMT) transcriptional program. In contrast to the accelerated tumor onset observed in the haploid-insufficient ErbB2 tumors, deletion of both ß-catenin alleles in the ErbB2KI model had only a minor impact on tumor onset that further correlated with the retention of normal adherens junctions. We further showed that retention of adherens junctional integrity was caused by the up-regulation of the closely related family member plakoglobin (γ-catenin) that maintained both adherens junctions and the activation of Wnt target genes. In contrast to the ErbB2KI basal tumor model, modulation of ß-catenin levels had no appreciable impact on tumor onset in an ErbB2-driven model of luminal breast cancer [murine mammary tumor virus promoter (MMTV-NIC)]. These observations argue that the balance of junctional and nuclear ß-catenin activity has a profound impact on tumor progression in this basal model of ErbB2-positive breast cancer.


Assuntos
Neoplasias Mamárias Experimentais/patologia , Receptor ErbB-2/metabolismo , beta Catenina/genética , Animais , Transição Epitelial-Mesenquimal , Feminino , Haploinsuficiência , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Transgênicos , RNA Interferente Pequeno/genética , Receptor ErbB-2/genética , Transdução de Sinais , Células Tumorais Cultivadas , gama Catenina/genética
12.
Cancer Res ; 76(9): 2662-74, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26933086

RESUMO

Rab coupling protein (FIP1C), an effector of the Rab11 GTPases, including Rab25, is amplified and overexpressed in 10% to 25% of primary breast cancers and correlates with poor clinical outcome. Rab25 is also frequently silenced in triple-negative breast cancer, suggesting its ability to function as either an oncogene or a tumor suppressor, depending on the breast cancer subtype. However, the pathobiologic role of FIP family members, such as FIP1C, in a tumor-specific setting remains elusive. In this study, we used ErbB2 mouse models of human breast cancer to investigate FIP1C function in tumorigenesis. Doxycycline-induced expression of FIP1C in the MMTV-ErbB2 mouse model resulted in delayed mammary tumor progression. Conversely, targeted deletion of FIP1C in the mammary epithelium of an ErbB2 model coexpressing Cre recombinase led to accelerated tumor onset. Genetic and biochemical characterization of these FIP1C-proficient and -deficient tumor models revealed that FIP1C regulated E-cadherin (CDH1) trafficking and ZONAB (YBX3) function in Cdk4-mediated cell-cycle progression. Furthermore, we demonstrate that FIP1C promoted lysosomal degradation of ErbB2. Consistent with our findings in the mouse, the expression of FIP1C was inversely correlated with ErbB2 levels in breast cancer patients. Taken together, our findings indicate that FIP1C acts as a tumor suppressor in the context of ErbB2-positive breast cancer and may be therapeutically exploited as an alternative strategy for targeting aberrant ErbB2 expression. Cancer Res; 76(9); 2662-74. ©2016 AACR.


Assuntos
Neoplasias da Mama/patologia , Receptor ErbB-2/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Feminino , Imunofluorescência , Xenoenxertos , Humanos , Immunoblotting , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout
13.
Cancer Res ; 73(14): 4474-87, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23720052

RESUMO

Although ERBB2 amplification and overexpression is correlated with poor outcome in breast cancer, the molecular mechanisms underlying the aggressive nature of these tumors has not been fully elucidated. To investigate this further, we have used a transgenic mouse model of ErbB2-driven tumor progression (ErbB2(KI) model) that recapitulates clinically relevant events, including selective amplification of the core erbB2 amplicon. By comparing the transcriptional profiles of ErbB2(KI) mammary tumors and human ERBB2-positive breast cancers, we show that ErbB2(KI) tumors possess molecular features of the basal subtype of ERBB2-positive human breast cancer, including activation of canonical ß-catenin signaling. Inhibition of ß-catenin-dependent signaling in ErbB2(KI)-derived tumor cells using RNA interference impaired tumor initiation and metastasis. Furthermore, treatment of ErbB2(KI) or human ERBB2-overexpressing tumor cells with a selective ß-catenin/CBP inhibitor significantly decreased proliferation and ErbB2 expression. Collectively, our data indicate that ERBB2-mediated breast cancer progression requires ß-catenin signaling and can be therapeutically targeted by selective ß-catenin/CBP inhibitors.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Mamárias Experimentais/patologia , Receptor ErbB-2/metabolismo , beta Catenina/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Receptor ErbB-2/genética , Transdução de Sinais , Transcrição Gênica , beta Catenina/genética
14.
Cancer Res ; 72(12): 3080-90, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22665265

RESUMO

The formation of ErbB2/ErbB3 heterodimers plays a critical role in ErbB2-mediated signaling in both normal mammary development and mammary tumor progression. Through 7 phosphoinositide 3-kinase (PI3K) phosphotyrosine-binding sites, ErbB3 is able to recruit PI3K and initiate the PI3K/AKT signaling pathway. To directly explore the importance of the ErbB3/PI3K pathway in mammary development and tumorigenesis, we generated a mouse model that carries a mutant ErbB3 allele lacking the seven known PI3K-binding sites (ErbB3(Δ85)). Mice homozygous for the ErbB3(Δ85) allele exhibited an initial early growth defect and a dramatic impairment of mammary epithelial outgrowth. Although homozygous adult mice eventually recovered from the growth defect, their mammary glands continued to manifest the mammary outgrowth and lactation defects throughout their adult life. Interestingly, despite the presence of a profound mammary gland defect, all of the female ErbB3Δ85 mice developed metastatic ErbB2-induced mammary tumors secondary to mammary epithelial expression of an activated ErbB2 oncogene capable of compensatory PI3K signaling from both EGF receptor and ErbB2. Our findings therefore indicate that, although ErbB3-associated PI3K activity is critical for mammary development, it is dispensable for ErbB2-induced mammary tumor progression.


Assuntos
Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Animais , Apoptose , Transformação Celular Neoplásica , Feminino , Lactação , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/genética , Transdução de Sinais
15.
Breast Cancer Res ; 14(1): R36, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22373082

RESUMO

INTRODUCTION: Activation of focal adhesion kinase (FAK) is hypothesized to play an important role in the pathogenesis of human breast cancer. METHODS: To directly evaluate the role of FAK in mammary tumour progression, we have used a conditional FAK mouse model and mouse mammary tumour virus (MMTV)-driven Cre recombinase strain to inactivate FAK in the mammary epithelium of a transgenic mouse model of ErbB2 breast cancer. RESULTS: Although mammary epithelial disruption of FAK in this model resulted in both a delay in onset and a decrease in the number of neoplastic lesions, mammary tumours occurred in 100% of virgin female mice. All of the tumours and derived metastases that developed were proficient for FAK due to the absence of Cre recombinase expression. The hyperplastic epithelia where Cre-mediated recombination of FAK could be detected exhibited a profound proliferative defect. Consistent with these observations, disruption of FAK in established tumour cells resulted in reduced tumour growth that was associated with impaired proliferation. To avoid the selection for FAK-proficient ErbB2 tumour epithelia through escape of Cre-mediated recombination, we next intercrossed the FAK conditional mice with a separate MMTV-driven ErbB2 strain that co-expressed ErbB2 and Cre recombinase on the same transcriptional unit. CONCLUSIONS: While a delay in tumour induction was noted, FAK-deficient tumours arose in 100% of female animals indicating that FAK is dispensable for ErbB2 tumour initiation. In addition, the FAK-null ErbB2 tumours retained their metastatic potential. We further demonstrated that the FAK-related Pyk2 kinase is still expressed in these tumours and is associated with its downstream regulator p130Cas. These observations indicate that Pyk2 can functionally substitute for FAK in ErbB2 mammary tumour progression.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Quinase 1 de Adesão Focal/deficiência , Neoplasias Pulmonares/enzimologia , Neoplasias Mamárias Experimentais/enzimologia , Receptor ErbB-2/metabolismo , Animais , Apoptose , Movimento Celular , Proteína Substrato Associada a Crk/metabolismo , Feminino , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/fisiologia , Quinase 2 de Adesão Focal/metabolismo , Deleção de Genes , Integrases/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Transplante de Neoplasias , Paxilina/metabolismo , Fosforilação , Carga Tumoral
16.
Proc Natl Acad Sci U S A ; 109(8): 2808-13, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21628573

RESUMO

The tyrosine kinase c-Src is activated in a large proportion of breast cancers, in which it is thought to play a key role in promoting the malignant phenotype. c-Src activity is also elevated in transgenic mouse models of breast cancer, including the widely used polyomavirus middle-T antigen (PyVmT) model, which provides an opportunity to study the importance of c-Src in mammary tumorigenesis. However, germline c-Src deletion in mammary epithelial and stromal compartments complicates the interpretation of in vivo tumorigenesis studies as a result of severe defects in mammary gland development. We have therefore engineered a mouse strain in which deletion of c-Src can be targeted to the mammary epithelium. We demonstrate that mammary epithelial disruption of c-Src impairs proliferation and tumor progression driven by PyVmT in vivo. Whereas related kinases substitute for c-Src in PyVmT signaling, c-Src ablation impairs cell cycle progression with decreased cyclin expression and elevated expression of cyclin-dependent kinase inhibitors. Our data indicate that c-Src has essential and unique functions in proliferation and tumor progression in this mouse model that may also be important in certain contexts in some human breast cancers.


Assuntos
Ciclo Celular , Transformação Celular Neoplásica/patologia , Epitélio/enzimologia , Epitélio/patologia , Glândulas Mamárias Animais/enzimologia , Glândulas Mamárias Animais/patologia , Quinases da Família src/metabolismo , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Adesão Celular , Proliferação de Células , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Progressão da Doença , Feminino , Deleção de Genes , Inativação Gênica , Humanos , Vírus do Tumor Mamário do Camundongo/metabolismo , Camundongos , Camundongos Nus , Especificidade de Órgãos , Fosforilação
17.
EMBO J ; 27(6): 910-20, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18273058

RESUMO

To explore the in vivo significance of ShcA during mammary tumorigenesis, we used mice expressing several phosphotyrosine-deficient ShcA alleles under the control of their endogenous promoter. We show that all three ShcA tyrosine phosphorylation sites are involved in the early stages of mammary tumour progression, including loss of the myoepithelial cell layer surrounding hyperplasias and during progression to carcinoma. We have determined that signals emanating from Y313 are important for tumour cell survival, whereas Y239/240 transduce signals promoting tumour vascularization. We further demonstrate that loss of ShcA expression in mammary epithelial cells abrogates tumour development. This study is the first to directly demonstrate that signalling downstream from the ShcA adaptor protein is critical for breast cancer development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Transdução de Sinais/fisiologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Progressão da Doença , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos , Fosforilação , Proteínas Adaptadoras da Sinalização Shc , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Tirosina/metabolismo
18.
Proc Natl Acad Sci U S A ; 104(51): 20302-7, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18056629

RESUMO

Elevated expression and activation of the focal adhesion kinase (FAK) occurs in a large proportion of human breast cancers. Although several studies have implicated FAK as an important signaling molecule in cell culture systems, evidence supporting a role for FAK in mammary tumor progression is lacking. To directly assess the role of FAK in this process, we have used the Cre/loxP recombination system to disrupt FAK function in the mammary epithelium of a transgenic model of breast cancer. Using this approach, we demonstrate that FAK expression is required for the transition of premalignant hyperplasias to carcinomas and their subsequent metastases. This dramatic block in tumor progression was further correlated with impaired mammary epithelial proliferation. These observations provide direct evidence that FAK plays a critical role in mammary tumor progression.


Assuntos
Carcinoma/secundário , Proteína-Tirosina Quinases de Adesão Focal/genética , Neoplasias Mamárias Experimentais/patologia , Animais , Carcinoma/enzimologia , Carcinoma/genética , Progressão da Doença , Feminino , Proteína-Tirosina Quinases de Adesão Focal/análise , Deleção de Genes , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Transgênicos
19.
Cancer Res ; 67(16): 7579-88, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17699761

RESUMO

ErbB-2 overexpression and amplification occurs in 15% to 30% of human invasive breast carcinomas associated with poor clinical prognosis. Previously, we have shown that four ErbB-2/Neu tyrosine-autophosphorylation sites within the cytoplasmic tail of the receptor recruit distinct adaptor proteins and are sufficient to mediate transforming signals in vitro. Two of these sites, representing the growth factor receptor binding protein 2 (Grb2; Neu-YB) and the Src homology and collagen (Shc; Neu-YD) binding sites, can induce mammary tumorigenesis and metastasis. Here, we show that transgenic mice bearing the two other ErbB-2 autophosphorylation sites (Neu-YC and Neu-YE) develop metastatic mammary tumors. A detailed comparison of biological profiles among all Neu mutant mouse models revealed that Neu-YC, Neu-YD, and Neu-YE mammary tumors shared similar pathologic and transcriptional features. By contrast, the Neu-YB mouse model displayed a unique pathology with a high metastatic potential that correlates with a distinct transcriptional profile, including genes that promote malignant tumor progression such as metalloproteinases and chemokines. Furthermore, Neu-YB tumor epithelial cells showed abundant intracellular protein level of the chemokine CXCL12/SDF-1alpha, which may reflect the aggressive nature of this Neu mutant mouse model. Taken together, these findings indicate that activation of distinct Neu-coupled signaling pathways has an important impact on the biological behavior of Neu-induced tumors.


Assuntos
Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Receptor ErbB-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Quimiocina CXCL12 , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Ativação Enzimática , Proteína Adaptadora GRB2/metabolismo , Perfilação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Adaptadoras da Sinalização Shc , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Transcrição Gênica
20.
Mol Cell Biol ; 27(18): 6361-71, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17636013

RESUMO

Tumor cells utilize glucose as a primary energy source and require ongoing lipid biosynthesis for growth. Expression of DecR1, an auxiliary enzyme in the fatty acid beta-oxidation pathway, is significantly diminished in numerous spontaneous mammary tumor models and in primary human breast cancer. Moreover, ectopic expression of DecR1 in ErbB2/Neu-induced mammary tumor cells is sufficient to reduce levels of ErbB2/Neu expression and impair mammary tumor outgrowth. This correlates with a decreased proliferative index and reduced rates of de novo fatty acid synthesis in DecR1-expressing breast cancer cells. Although DecR1 expression does not affect glucose uptake in ErbB2/Neu-transformed cells, sustained expression of DecR1 protects mammary tumor cells from apoptotic cell death following glucose withdrawal. Moreover, expression of catalytically impaired DecR1 mutants in Neu-transformed breast cancer cells restored Neu expression levels and increased mammary tumorigenesis in vivo. These results argue that DecR1 is sufficient to limit breast cancer cell proliferation through its ability to limit the extent of oncogene expression and reduce steady-state levels of de novo fatty acid synthesis. Furthermore, DecR1-mediated suppression of tumorigenesis can be uncoupled from its effects on Neu expression. Thus, while downregulation of Neu expression may contribute to DecR1-mediated tumor suppression in certain cell types, this is not an obligate event in all Neu-transformed breast cancer cells.


Assuntos
Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/patologia , Receptor ErbB-2/fisiologia , Membro 10c de Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Ácidos Graxos/biossíntese , Feminino , Técnica Direta de Fluorescência para Anticorpo , Glucose/metabolismo , Humanos , Cinética , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Nus , Camundongos Transgênicos , Modelos Biológicos , Mutação , Transplante de Neoplasias , Ratos , Receptor ErbB-2/genética , Membro 10c de Receptores do Fator de Necrose Tumoral/genética , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA