RESUMO
Pubertal delay can be due to hypogonadotropic hypogonadism (HH), which may occur in association with anosmia or hyposmia and is known as Kallmann syndrome (OMIM #308700). Recently, hypogonadotropic hypogonadism has been suggested to overlap with Witteveen-Kolk syndrome (WITKOS, OMIM #613406) associated with 15q24 microdeletions encompassing SIN3A. Whether hypogonadotropic hypogonadism is due to haploinsufficiency of SIN3A or any of the other eight genes present in 15q24 is not known. We report the case of a female patient with delayed puberty associated with intellectual disability, behavior problems, dysmorphic facial features, and short stature, at the age of 14 years. Clinical, laboratory, and imaging assessments confirmed the diagnosis of Kallmann syndrome. Whole-exome sequencing identified a novel heterozygous frameshift variant, NM_001145358.2:c.3045_3046dup, NP_001138830.1:p.(Ile1016Argfs*6) in SIN3A, classified as pathogenic according to the American College of Medical Genetics and Genomics (ACMG/AMP) criteria. Reverse phenotyping led to the clinical diagnosis of WITKOS. No other variant was found in the 96 genes potentially related to hypogonadotropic hypogonadism. The analysis of the other contiguous seven genes to SIN3A in 15q24 did not reveal any clinically relevant variant. In conclusion, these findings point to SIN3A as the gene in 15q24 related to the reproductive phenotype in patients with overlapping WITKOS and Kallmann syndrome.
RESUMO
Growth hormone (GH) binding to GH receptor activates janus kinase 2 (JAK2)-signal transducer and activator of transcription 5b (STAT5b) pathway, which stimulates transcription of insulin-like growth factor-1 (IGF1), insulin-like growth factor binding protein 3 (IGFBP3) and insulin-like growth factor acid-labile subunit (IGFALS). Although STAT5B deficiency was established as an autosomal recessive disorder, heterozygous dominant-negative STAT5B variants have been reported in patients with less severe growth deficit and milder immune dysfunction. We developed an in vivo functional assay in zebrafish to characterize the pathogenicity of three human STAT5B variants (p.Ala630Pro, p.Gln474Arg and p.Lys632Asn). Overexpression of human wild-type (WT) STAT5B mRNA and its variants led to a significant reduction of body length together with developmental malformations in zebrafish embryos. Overexpression of p.Ala630Pro, p.Gln474Arg or p.Lys632Asn led to an increased number of embryos with pericardial edema, cyclopia and bent spine compared with WT STAT5B. Although co-injection of WT and p.Gln474Arg and WT and p.Lys632Asn STAT5B mRNA in zebrafish embryos partially or fully rescues the length and the developmental malformations in zebrafish embryos, co-injection of WT and p.Ala630Pro STAT5B mRNA leads to a greater number of embryos with developmental malformations and a reduction in body length of these embryos. These results suggest that these variants could interfere with endogenous stat5.1 signaling through different mechanisms. In situ hybridization of zebrafish embryos overexpressing p.Gln474Arg and p.Lys632Asn STAT5B mRNA shows a reduction in igf1 expression. In conclusion, our study reveals the pathogenicity of the STAT5B variants studied.
Assuntos
Fator de Transcrição STAT5 , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Hormônio do Crescimento , Transdução de Sinais/genética , RNA Mensageiro , Fator de Crescimento Insulin-Like I/genéticaRESUMO
La osteoporosis es un trastorno para tener en cuenta en niños con patologías crónicas graves o con algunas enfermedades genéticas que predisponen al incremento de la fragilidad ósea. La osteoporosis primaria es una entidad con etiologías emergentes y puede ocurrir en forma sindrómica. La asociación con pliegues retinianos congénitos debe orientar al diagnóstico de osteoporosis-pseudoglioma (OMIM 259770), síndrome poco frecuente (prevalencia de 1/2000000), que se origina por la pérdida de función de la proteína LRP5 (low-density lipoprotein receptor-related protein 5) y compromete la vía de señalización de Wnt/ß-catenina. Se presenta el caso de un niño con pliegues retinianos congénitos, ceguera progresiva y múltiples fracturas cuyo estudio clínico, bioquímico y genético confirmó el diagnóstico de osteoporosis primaria debido a una nueva variante inactivante en el gen LRP5 en homocigosis
Osteoporosis should be considered in children with severe chronic diseases or in association with some genetic diseases that bear an increased risk of bone fragility. Primary osteoporosis is an entity in which emerging aetiologies are being recognized. Its association with congenital retinal folds should guide the diagnosis to the Osteoporosis-Pseudoglioma syndrome (OMIM 259770), a rare disease (prevalence of 1/2000000), caused by the loss of function of the protein LRP5 (low-density lipoprotein receptor-related protein 5) resulting in the alteration of the Wnt/ß-catenin signalling pathway. We report the case of a child with congenital retinal folds, progressive loss of vision and multiple fractures whose clinical, biochemical and genetic studies confirmed the diagnosis of primary osteoporosis due to a novel homozygous inactivating variant in LRP5
Assuntos
Humanos , Masculino , Criança , Osteoporose/diagnóstico , Osteoporose/terapia , Cegueira , Fraturas MúltiplasRESUMO
Osteoporosis should be considered in children with severe chronic diseases or in association with some genetic diseases that bear an increased risk of bone fragility. Primary osteoporosis is an entity in which emerging aetiologies are being recognized. Its association with congenital retinal folds should guide the diagnosis to the Osteoporosis-Pseudoglioma syndrome (OMIM 259770), a rare disease (prevalence of 1/2 000 000), caused by the loss of function of the protein LRP5 (low-density lipoprotein receptor-related protein 5) resulting in the alteration of the Wnt/ß-catenin signalling pathway. We report the case of a child with congenital retinal folds, progressive loss of vision and multiple fractures whose clinical, biochemical and genetic studies confirmed the diagnosis of primary osteoporosis due to a novel homozygous inactivating variant in LRP5.
La osteoporosis es un trastorno para tener en cuenta en niños con patologías crónicas graves o con algunas enfermedades genéticas que predisponen al incremento de la fragilidad ósea. La osteoporosis primaria es una entidad con etiologías emergentes y puede ocurrir en forma sindrómica. La asociación con pliegues retinianos congénitos debe orientar al diagnóstico de osteoporosis-pseudoglioma (OMIM 259770), síndrome poco frecuente (prevalencia de 1/2 000 000), que se origina por la pérdida de función de la proteína LRP5 (low-density lipoprotein receptor-related protein 5) y compromete la vía de señalización de Wnt/ß-catenina. Se presenta el caso de un niño con pliegues retinianos congénitos, ceguera progresiva y múltiples fracturas cuyo estudio clínico, bioquímico y genético confirmó el diagnóstico de osteoporosis primaria debido a una nueva variante inactivante en el gen LRP5 en homocigosis.
Assuntos
Osteogênese Imperfeita/diagnóstico , Criança , Marcadores Genéticos , Testes Genéticos , Homozigoto , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Mutação , Osteogênese Imperfeita/genéticaRESUMO
BACKGROUND: The most frequent monogenic causes of growth hormone insensitivity (GHI) include defects in genes encoding the GH receptor itself (GHR), the signal transducer and activator of transcription (STAT5B), the insulin like-growth factor type I (IGF1) and the acid-labile subunit (IGFALS). GHI is characterized by a continuum of mild to severe post-natal growth failure. OBJECTIVE: To characterize the molecular defect in a patient with short stature and partial GHI. PATIENT AND METHODS: The boy was born at term adequate for gestational age from non-consanguineous normal-stature parents. At 2.2â¯years, he presented proportionate short stature (height -2.77 SDS), wide forehead and normal mental development. Whole-exome analysis and functional characterization (site-directed mutagenesis, dual luciferase reporter assay, immunofluorescence and western immunoblot) were performed. RESULTS: Biochemical and endocrinological evaluation revealed partial GH insensitivity with normal stimulated GH peak (7.8â¯ng/mL), undetectable IGF1 and low IGFBP3 levels. Two heterozygous variants in the GH-signaling pathway were found: a novel heterozygous STAT5B variant (c.1896G>T, p.K632N) and a hypomorphic IGFALS variant (c.1642C>T, p.R548W). Functional in vitro characterization demonstrated that p.K632N-STAT5b is an inactivating variant that impairs STAT5b activity through abolished phosphorylation. Remarkably, the patient's immunological evaluation displayed only a mild hypogammaglobulinemia, while a major characteristic of STAT5b deficient patients is severe immunodeficiency. CONCLUSIONS: We reported a novel pathogenic inactivating STAT5b variant, which may be associated with partial GH insensitivity and can present without severe immunological complications in heterozygous state. Our results contribute to expand the spectrum of phenotypes associated to GHI.
Assuntos
Agamaglobulinemia/genética , Síndrome de Laron/genética , Fator de Transcrição STAT5/genética , Agamaglobulinemia/imunologia , Pré-Escolar , Heterozigoto , Hormônio do Crescimento Humano/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome de Laron/imunologia , Síndrome de Laron/metabolismo , Síndrome de Laron/fisiopatologia , Masculino , Testes de Função Hipofisária , Mutação Puntual , Índice de Gravidade de DoençaRESUMO
OBJECTIVE: to describe the marked variability in clinical and biochemical patterns that are associated with a p.R209H GH1 missense variant in a large Argentinean pedigree, which makes the diagnosis of GHD elusive. DESIGN: We describe a non-consanguineous pedigree composed by several individuals with short stature, including 2 pediatric patients with typical diagnosis of isolated growth hormone deficiency (IGHD) and 4 other siblings with severe short stature, low serum IGF-1 and IGFBP-3, but normal stimulated GH levels, suggesting growth hormone insensitivity (GHI) in the latter group. RESULTS: Patients with classical IGHD phenotype carried a heterozygous variant in GH1: c.626G>A (p.R209H). Data from the extended pedigree suggested GH1 as the initial candidate gene, which showed the same pathogenic heterozygous GH1 variant in the four siblings with short stature and a biochemical pattern of GHI. CONCLUSIONS: We suggest considering GH1 sequencing in children with short stature associated to low IGF-1 and IGFBP-3 serum levels, even in the context of normal response to growth hormone provocative testing (GHPT).
Assuntos
Estatura , Nanismo Hipofisário/genética , Hormônio do Crescimento Humano/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Argentina , Criança , Pré-Escolar , Técnicas de Diagnóstico Endócrino , Nanismo Hipofisário/metabolismo , Nanismo Hipofisário/fisiopatologia , Feminino , Transtornos do Crescimento/genética , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/fisiopatologia , Heterozigoto , Homozigoto , Hormônio do Crescimento Humano/metabolismo , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto JovemRESUMO
BACKGROUND: IGF1 is a key factor in fetal and postnatal growth. To date, only three homozygous IGF1 gene defects leading to complete or partial loss of IGF1 activity have been reported in three short patients born small for gestational age. We describe the fourth patient with severe short stature presenting a novel homozygous IGF1 gene mutation. RESULTS: We report a boy born from consanguineous parents at 40 weeks of gestational age with intrauterine growth restriction and severe postnatal growth failure. Physical examination revealed proportionate short stature, microcephaly, facial dysmorphism, bilateral sensorineural deafness and mild global developmental delay. Basal growth hormone (GH) fluctuated from 0.2 to 29 ng/mL, while IGF1 levels ranged from -1.15 to 2.95 SDS. IGFBP3 was normal-high. SNP array delimited chromosomal regions of homozygosity, including 12q23.2 where IGF1 is located. IGF1 screening by HRM revealed a homozygous missense variant NM_000618.4(IGF1):c.322T>C, p.(Tyr108His). The change of the highly conserved Tyr60 in the mature IGF1 peptide was consistently predicted as pathogenic by multiple bioinformatic tools. Tyr60 has been described to be critical for IGF1 interaction with type 1 IGF receptor (IGF1R). In vitro, HEK293T cells showed a marked reduction of IGF1R phosphorylation after stimulation with serum from the patient as compared to sera from age-matched controls. Mutant IGF1 was also less efficient in inducing cell growth. CONCLUSION: The present report broadens the spectrum of clinical and biochemical presentation of homozygous IGF1 defects and underscores the variability these patients may present depending on the IGF/IGF1R pathway activity.
Assuntos
Transtornos do Crescimento/genética , Perda Auditiva Neurossensorial/genética , Fator de Crescimento Insulin-Like I/deficiência , Mutação de Sentido Incorreto/genética , Anormalidades Múltiplas/genética , Proliferação de Células , Biologia Computacional , Simulação por Computador , Retardo do Crescimento Fetal/genética , Células HEK293 , Homozigoto , Humanos , Lactente , Fator de Crescimento Insulin-Like I/genética , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Tirosina/genéticaRESUMO
Germinal heterozygous activating STAT3 mutations represent a novel monogenic defect associated with multi-organ autoimmune disease and, in some cases, severe growth retardation. By using whole-exome sequencing, we identified two novel STAT3 mutations, p.E616del and p.C426R, in two unrelated pediatric patients with IGF-I deficiency and immune dysregulation. The functional analyses showed that both variants were gain-of-function (GOF), although they were not constitutively phosphorylated. They presented differences in their dephosphorylation kinetics and transcriptional activities under interleukin-6 stimulation. Both variants increased their transcriptional activities in response to growth hormone (GH) treatment. Nonetheless, STAT5b transcriptional activity was diminished in the presence of STAT3 GOF variants, suggesting a disruptive role of STAT3 GOF variants in the GH signaling pathway. This study highlights the broad clinical spectrum of patients presenting activating STAT3 mutations and explores the underlying molecular pathway responsible for this condition, suggesting that different mutations may drive increased activity by slightly different mechanisms.