Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 214: 108852, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38943878

RESUMO

Abiotic stress such as salt, heavy metals, drought, temperature, and others can affect plants from seed germination to seedling growth to reproductive maturity. Abiotic stress increases reactive oxygen species and lowers antioxidant enzymes in plants resulted the plant tolerance ability against stress conditions decrease. Hydrogen sulfide (H2S) and nitric oxide (NO) are important gasotransmitters involved in seed germination, photosynthesis, growth and development, metabolism, different physiological processes and functions in plants. In plants, various enzymes are responsible for the biosynthesis of both H2S and NO via both enzymatic and non-enzymatic pathways. They also mediate post-translation modification, such as persulfidation, and nitrosylation, which are protective mechanisms against oxidative damage. They also regulate some cellular signalling pathways in response to various abiotic stress. H2S and NO also stimulate biochemical reactions in plants, including cytosolic osmoprotectant accumulation, reactive oxygen species regulation, antioxidant system activation, K+ uptake, and Na+ cell extrusion or vacuolar compartmentation. In this review, we summarize how H2S and NO interact with each other, the function of both H2S and NO, the mechanism of biosynthesis, and post-translational modification under different abiotic stress. Our main emphasis was to find the cross-talk between NO and H2S and how they regulate genes in plants under abiotic stress.

2.
J Asian Nat Prod Res ; : 1-15, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38311941

RESUMO

Based on the major components in the leaves, the ashwagandha has been found to exist in several chemotypic forms in India. From the leaves of various accessions of Withania somnifera, which were maintained in our institute, three new steroids namely, 4-acetoxy-20ß-hydroxy-1-oxo-witha-2,5,24-trienolide (7), 24,25-dihydro-14α-hydroxy withanolide D (9), 5α,6ß,17α,27-tetrahydroxy-1-oxo-witha-2,24-dienolide (12) together with thirteen known withanolides were identified by spectroscopic methods. From the roots and stem of one accession and leaves of another, a new alkyl ester glucoside (4) has also been isolated. The new withanolides 7, 9 and 12 have been tentatively named as withanolide 135 A, withanolide 135B and withanolide 108, respectively.

3.
Phytother Res ; 38(3): 1695-1714, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38318763

RESUMO

Withania somnifera, the plant named Indian ginseng, Ashwagandha, or winter cherry, has been used since ancient times to cure various health ailments. Withania somnifera is rich in constituents belonging to chemical classes like alkaloids, saponins, flavonoids, phenolic acids, and withanolides. Several chemotypes were identified based on their phytochemical composition and credited for their multiple bioactivities. Besides, exhibiting neuroprotective, immunomodulatory, adaptogenic, anti-stress, bone health, plant has shown promising anti-cancer properties. Several withanolides have been reported to play a crucial role in cancer; they target cancer cells by different mechanisms such as modulating the expression of tumor suppressor genes, apoptosis, telomerase expression, and regulating cell signaling pathway. Though, many treatments are available for cancer; however, to date, no assured reliable cure for cancer is made available. Additionally, synthetic drugs may lead to development of resistance in time; therefore, focus on new and natural drugs for cancer therapeutics may prove a longtime effective alternative. This current report is a comprehensive combined analysis upto 2023 with articles focused on bio-activities of plant Withania somnifera from various sources, including national and international government sources. This review focuses on understanding of various mechanisms and pathways to inhibit uncontrolled cell growth by W. somnifera bioactives, as reported in literature. This review provides a recent updated status of the W. somnifera on pharmacological properties in general and anti-cancer in particular and may provide a guiding resource for researchers associated with natural product-based cancer research and healthcare management.


Assuntos
Withania , Vitanolídeos , Vitanolídeos/farmacologia , Withania/química , Extratos Vegetais/farmacologia , Compostos Fitoquímicos
4.
Plant Physiol Biochem ; 208: 108419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377888

RESUMO

Withania somnifera (Ashwagandha), is one of the most reputed Indian medicinal plants, having immense pharmacological activities due to the occurrence of withanolides. The withanolides are biosynthesized through triterpenoid biosynthetic pathway with the involvement of WsCAS leading to cyclization of 2, 3 oxidosqualene, which is a key metabolite to further diversify to a myriad of phytochemicals. In contrast to the available reports on the studies of WsCAS in withanolide biosynthesis, its involvement in phytosterol biosynthesis needs investigation. Present work deals with the understanding of role of WsCAS triterpenoid synthase gene in the regulation of biosynthesis of phytosterols & withanolides. Docking studies of WsCAS protein revealed Conserved amino acids, DCATE motif, and QW motif which are involved in efficient substrate binding, structure stabilization, and catalytic activity. Overexpression/silencing of WsCAS leading to increment/decline of phytosterols confers its stringent regulation in phytosterols biosynthesis. Differential regulation of WsCAS on the metabolic flux towards phytosterols and withanolide biosynthesis was observed under abiotic stress conditions. The preferential channelization of 2, 3 oxidosqualene towards withanolides and/or phytosterols occurred under heat/salt stress and cold/water stress, respectively. Stigmasterol and ß-sitosterol showed major contribution in high/low temperature and salt stress, and campesterol in water stress management. Overexpression of WsCAS in Arabidopsis thaliana led to the increment in phytosterols in general. Thus, the WsCAS plays important regulatory role in the biosynthetic pathway of phytosterols and withanolides under abiotic stress conditions.


Assuntos
Fitosteróis , Esqualeno/análogos & derivados , Triterpenos , Withania , Vitanolídeos , Vitanolídeos/metabolismo , Esteróis , Withania/genética , Withania/metabolismo , Triterpenos/metabolismo , Desidratação , Fitosteróis/metabolismo , Estresse Fisiológico/genética
5.
Planta ; 256(1): 4, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648276

RESUMO

MAIN CONCLUSION: Overexpression of a novel geranylgeranyl pyrophosphate synthase gene (WsGGPPS) in planta resulted in increased levels of gibberellic acid and decrease in withanolide content. Withania somnifera (L.) Dunal, the herb from family Solanaceae is one of the most treasured medicinal plant used in traditional medicinal systems owing to its unique stockpile of pharmaceutically active secondary metabolites. Phytochemical and pharmacological studies in this plant were well established, but the genes affecting the regulation of biosynthesis of major metabolites were not well elucidated. In this study cloning and functional characterization of a key enzyme in terpenoid biosynthetic pathway viz. geranylgeranyl pyrophosphate synthase (EC 2.5.1.29) gene from Withania somnifera was performed. The full length WsGGPPS gene contained 1,104 base pairs that encode a polypeptide of 365 amino acids. The quantitative expression analysis suggested that WsGGPPS transcripts were expressed maximally in flower tissues followed by berry tissues. The expression levels of WsGGPPS were found to be regulated by methyl jasmonate (MeJA) and salicylic acid (SA). Amino acid sequence alignment and phylogenetic studies suggested that WsGGPPS had close similarities with GGPPS of Solanum tuberosum and Solanum pennellii. The structural analysis provided basic information about three dimensional features and physicochemical parameters of WsGGPPS protein. Overexpression of WsGGPPS in planta for its functional characterization suggested that the WsGGPPS was involved in gibberellic acid biosynthesis.


Assuntos
Withania , Vitanolídeos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Giberelinas , Filogenia , Withania/genética , Vitanolídeos/metabolismo
6.
Mol Biol Rep ; 49(6): 4555-4563, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35526254

RESUMO

BACKGROUND: The flux of isoprenoids and the total accumulation of triterpenoid saponins known as centellosides in C. asiatica are controlled by the key genes of the Mevalonate pathway (MVA). These genes were reported to have positive regulation of the pathway in providing isoprenoid moieties. Though, some information is available on the pathway and secondary metabolites. However, most of the pathway steps are not characterized functionally. METHODOLOGY AND RESULTS: For the study, full-length pathway gene Hydroxymethyl glutaryl-CoA-synthase (CaHMGS; GenBank accession number: MZ997833), was isolated from previously annotated transcriptome data of Centella asiatica leaves. HMGS has been successfully cloned and heterologously expressed in bacteria E. coli strain DH5α. The cloned gene has been sequenced and further characterized through in silico studies by different bioinformatics tools. Also, the gene sequences have been submitted in NCBI. In silico studies of isolated gene sequence revealed the nature, characteristics of genes. The ORF of HMGS is 1449 bp encoding 482 amino acids. Predicted molecular weight (MW) of HMGS was 48.09 kDa and theoretical pI was 5.97. Blast results and Multiple sequence alignments of the gene showing the similarity with HMGS of other plants of their respective families. The Molecular Evolutionary Genetic Analysis (MEGA) version 10.1.6 was used to construct a phylogenetic tree. Differential tissue-specific expression of different plant parts was also checked. Tissue expression patterns unveiled that the highest expression level of the CaHMGS had been seen in the roots and lowest in the node of the plant. Functional complementation experiment of the CaHMGS in Saccharomyces cerevisiae wild strain YSC1021 and haploid strain YSC1021 which lack HMGS protein confirmed that the CaHMGS gene encodes functional CaHMGS that catalyzed the biosynthesis of mevalonate in yeast. CONCLUSIONS: The gene was reported, cloned and characterized first time in Centella asiatica. Understanding this biosynthetic pathway gene will further help in the improvement of plants for enhanced secondary metabolites production.


Assuntos
Centella , Triterpenos , Vias Biossintéticas/genética , Centella/genética , Centella/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Ácido Mevalônico/metabolismo , Filogenia , Terpenos
7.
J Ethnopharmacol ; 278: 114296, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090907

RESUMO

ETHNO-PHARMACOLOGICAL RELEVANCE: Withania somnifera (L.) Dunal, commonly known as Ashwagandha, belongs to the family Solanaceae. In Ayurveda, Ashwagandha has been defined as one of the most important herb and is considered to be the best adaptogen. It is also an excellent rejuvenator, a general health tonic and cure for various disorders such as cerebrovascular, insomnia, asthma, ulcers, etc. Steroidal lactones (Withanolides: Withanolide A, Withaferin A, Withanolide D, Withanone, etc) isolated from this plant, possess promising medicinal properties such as anti-inflammatory, immune-stimulatory etc. Standardized root extract of the plant NMITLI-118R (NM) was prepared at CSIR-CIMAP, and was investigated for various biological activities at CSIR-CDRI. Among the notable medicinal properties, NM exhibited excellent neuroprotective activity in the middle cerebral artery occlusion (MCAO) rat model. AIM OF THE STUDY: Endothelial dysfunction is the primary event in the cerebrovascular or cardiovascular disorders, present study was thus undertaken to evaluate vasoprotective potential of NM and its biomarker compound Withanolide A (WA) using rat aortic rings and EA.hy926 endothelial cells. MATERIAL AND METHODS: Transverse aortic rings of 10 weeks old Wistar rats were used to evaluate effect of NM and WA on the vasoreactivity. While, mechanism of NM and WA mediated vasorelaxant was investigated in Ea.hy926 cell line by measuring NO generation, nitrite content, Serine 1177 phosphorylation of eNOS, reduced/oxidized biopterin levels and expression of endothelial nitric oxide synthase (eNOS) mRNA and protein. RESULTS: Fingerprinting of NM using HPLC identified presence of WA in the extract. NM as well as WA exerted moderate vasorelaxant effect in the endothelium intact rat aortic rings which was lesser than acetylcholine (ACh). NM and WA augmented ACh induced relaxation in the rat aortic rings. NM and WA dependent vasorelaxation was blocked by N-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4] oxadiazolo [4,3,-a]quinoxalin-1-one (ODQ), indicating role of NO/cGMP. Further Ea.hy926 cells treated with NM and WA showed accumulation of nitrite content, enhanced NO levels, eNOS expression and eNOS phosphorylation (Serine 1177). CONCLUSION: Altogether NM and WA dependent improvement in the NO availability seems to be mediated by the enhanced eNOS phosphorylation. WA, seems to be one of the active constituent of NM, and presence of other vasoactive substances cannot be ruled out. The data obtained imply that the vasorelaxant property of NM is beneficial for its neuroprotective potential.


Assuntos
Aorta/efeitos dos fármacos , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Vasodilatadores/farmacologia , Withania/química , Vitanolídeos/farmacologia , Animais , Biomarcadores , Linhagem Celular , Proliferação de Células , Células Endoteliais/efeitos dos fármacos , Masculino , Extratos Vegetais/química , Raízes de Plantas/química , Ratos , Ratos Wistar , Vasoconstrição/efeitos dos fármacos , Vasodilatadores/química , Vitanolídeos/química
8.
J Ethnopharmacol ; 270: 113819, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33460762

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Withanone (WN), an active constituent of Withania somnifera commonly called Ashwagandha has remarkable pharmacological responses along with neurological activities. However, for a better understanding of the pharmacokinetic and pharmacodynamic behavior of WN, a comprehensive in-vitro ADME (absorption, distribution, metabolism, and excretion) studies are necessary. AIM OF THE STUDY: A precise, accurate, and sensitive reverse-phase ultra-performance liquid chromatographic method of WN was developed and validated in rat plasma for the first time. The developed method was successfully applied to the in-vitro ADME investigation of WN. MATERIAL AND METHODS: The passive permeability of WN was assayed using PAMPA plates and the plasma protein binding (PPB) was performed using the equilibrium dialysis method. Pooled liver microsomes of rat (RLM) and human (HLM) were used for the microsomal stability, CYP phenotyping, and inhibition studies. CYP phenotyping was evaluated using the specific inhibitors. CYP inhibition study was performed using specific probe substrates along with WN or specific inhibitors. RESULTS: WN was found to be stable in the simulated gastric and intestinal environment and has a high passive permeability at pH 4.0 and 7.0 in PAMPA assay. The PPB of WN at 5 and 20 µg/mL concentrations were found to be high i.e. 82.01 ± 1.44 and 88.02 ± 1.15%, respectively. The in vitro half-life of WN in RLM and HLM was found to be 59.63 ± 2.50 and 68.42 ± 2.19 min, respectively. CYP phenotyping results showed that WN was extensively metabolized by CYP 3A4 and1A2 enzymes in RLM and HLM. However, the results of CYP Inhibition studies showed that none of the CYP isoenzymes were potentially inhibited by WN in RLM and HLM. CONCLUSION: The in vitro results of pH-dependent stability, plasma stability, permeability, PPB, blood partitioning, microsomal stability, CYP phenotyping, and CYP inhibition studies demonstrated that WN could be a better phytochemical for neurological disorders.


Assuntos
Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Vitanolídeos/farmacologia , Animais , Humanos , Isoenzimas/efeitos dos fármacos , Isoenzimas/metabolismo , Masculino , Microssomos Hepáticos/metabolismo , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/metabolismo , Permeabilidade/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Withania/química , Vitanolídeos/isolamento & purificação , Vitanolídeos/metabolismo
9.
Mol Biol Rep ; 47(9): 6587-6598, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32860161

RESUMO

Genus Ocimum is known to have species possessing important therapeutic essential oil. The major phytoconstituents of essential oil in Ocimum species are phenylpropanoids and terpenoids. The essential oil is accumulated in the trichomes; the specialized structures predominantly found on leaves and other tissues. The development of trichome is integrated with development of plant and leaf and also tightly coordinated with the primary and secondary metabolic pathways producing essential oil constituents. In continuation to our studies on elucidating/understanding the mechanism of biosynthesis of  essential oil pathways in Ocimum species, we have performed comparative transcriptome analysis to investigate the role of trichome-related gene expression in the regulation of biosynthetic pathways of essential oil. The essential oil biogenesis is tightly integrated with primary metabolic activities, the analysis for the expression pattern of genes related to primary metabolism and its relationship with secondary metabolism was evaluated in comparative manner. Physiological parameters in relation to primary metabolism such as photosynthetic pigment content, soluble sugar content, and invertase enzymes along with morphological parameters were analysed in O. basilicum and O. sanctum. Differential expression profiling uncovered about 8116 and 2810 differentially expressed transcripts in O. basilicum and O. sanctum, respectively. Enrichment of differentially expressed genes were analysed in relation to metabolic pathways, primary metabolism and secondary metabolism. Trichome related genes identified from the Ocimum species vis-à-vis their expression profiles suggested higher expression in O. basilicum. The findings in this study provide interesting insights into the role of trichome-related transcripts in relation to essential oil content in Ocimum species. The study is valuable as this is the first study on revealing the transcripts and their role in trichome development and essential oil biogenesis in two major species of Ocimum.


Assuntos
Ocimum/química , Ocimum/metabolismo , Óleos Voláteis/metabolismo , Transcriptoma/genética , Tricomas/crescimento & desenvolvimento , Tricomas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Ontologia Genética , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Ocimum/enzimologia , Ocimum/genética , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolismo Secundário/genética , Metabolismo Secundário/fisiologia , Terpenos/metabolismo , Tricomas/química , Tricomas/genética
10.
Plant Cell Rep ; 39(11): 1443-1465, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32789542

RESUMO

KEY MESSAGE: WsWRKY1-mediated transcriptional modulation of Withania somnifera tryptophan decarboxylase gene (WsTDC) helps to regulate fruit-specific tryptamine generation for production of withanamides. Withania somnifera is a highly valued medicinal plant. Recent demonstration of novel indolyl metabolites called withanamides in its fruits (berries) prompted us to investigate its tryptophan decarboxylase (TDC), as tryptophan is invariably a precursor for indole moiety. TDC catalyzes conversion of tryptophan into tryptamine, and the catalytic reaction constitutes a committed metabolic step for synthesis of an array of indolyl metabolites. The TDC gene (WsTDC) was cloned from berries of the plant and expressed in E. coli. The recombinant enzyme was purified and characterized for its catalytic attributes. Catalytic and structural aspects of the enzyme indicated its regulatory/rate-limiting significance in generation of the indolyl metabolites. Novel tissue-wise and developmentally differential abundance of WsTDC transcripts reflected its preeminent role in withanamide biogenesis in the fruits. Transgenic lines overexpressing WsTDC gene showed accumulation of tryptamine at significantly higher levels, while lines silenced for WsTDC exhibited considerably depleted levels of tryptamine. Cloning and sequence analysis of promoter of WsTDC revealed the presence of W-box in it. Follow-up studies on isolation of WsWRKY1 transcription factor and its overexpression in W. somnifera revealed that WsTDC expression was substantially induced by WsWRKY1 resulting in overproduction of tryptamine. The study invokes a key role of TDC in regulating the indolyl secondary metabolites through enabling elevated flux/supply of tryptamine at multiple levels from gene expression to catalytic attributes overall coordinated by WsWRKY1. This is the first biochemical, molecular, structural, physiological and regulatory description of a fruit-functional TDC.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/genética , Proteínas de Plantas/genética , Triptaminas/biossíntese , Withania/genética , Withania/metabolismo , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Clonagem Molecular , Dissacarídeos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Indóis/metabolismo , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triptaminas/metabolismo
11.
Physiol Plant ; 159(4): 381-400, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27580641

RESUMO

Rose-scented geranium (Pelargonium spp.) is one of the most important aromatic plants and is well known for its diverse perfumery uses. Its economic importance is due to presence of fragrance rich essential oil in its foliage. The essential oil is a mixture of various volatile phytochemicals which are mainly terpenes (isoprenoids) in nature. In this study, on the geranium foliage genes related to isoprenoid biosynthesis (DXS, DXR and HMGR) were isolated, cloned and confirmed by sequencing. Further, the first gene of 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, 1-deoxy-d-xylulose-5-phosphate synthase (GrDXS), was made full length by using rapid amplification of cDNA ends strategy. GrDXS contained a 2157 bp open reading frame that encoded a polypeptide of 792 amino acids having calculated molecular weight 77.5 kDa. This study is first report on heterologous expression and kinetic characterization of any gene from this economically important plant. Expression analysis of these genes was performed in different tissues as well as at different developmental stages of leaves. In response to external elicitors, such as methyl jasmonate, salicylic acid, light and wounding, all the three genes showed differential expression profiles. Further GrDXS was over expressed in the homologous (rose-scented geranium) as well as in heterologous (Withania somnifera) plant systems through genetic transformation approach. The over-expression of GrDXS led to enhanced secondary metabolites production (i.e. essential oil in rose-scented geranium and withanolides in W. somnifera). To the best of our knowledge, this is the first report showing the expression profile of the three genes related to isoprenoid biosynthesis pathways operated in rose-scented geranium as well as functional characterization study of any gene from rose-scented geranium through a genetic transformation system.


Assuntos
Vias Biossintéticas/genética , Butadienos/metabolismo , Genes de Plantas , Geranium/genética , Hemiterpenos/metabolismo , Pentanos/metabolismo , Plastídeos/metabolismo , Metabolismo Secundário/genética , Terpenos/metabolismo , Withania/genética , Acetatos/farmacologia , Sequência de Bases , Biocatálise/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/efeitos da radiação , Clonagem Molecular , Biologia Computacional , Ciclopentanos/farmacologia , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Geranium/efeitos dos fármacos , Geranium/efeitos da radiação , Luz , Oxilipinas/farmacologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/efeitos dos fármacos , Plastídeos/efeitos da radiação , Proteínas Recombinantes/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Metabolismo Secundário/efeitos da radiação , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia Estrutural de Proteína , Withania/efeitos dos fármacos , Withania/efeitos da radiação
12.
Protoplasma ; 254(1): 505-522, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27263081

RESUMO

Artemisia annua accumulates substantial quantities of unique and highly useful antimalarial sesquiternoid artemisinin and related phytomolecules as well as its characteristic essential oil in its glandular trichomes. The phytomolecules are mainly produced in its leaves and inflorescences. Artemisia annua plants were grown under NaCl salinity (50, 100 and 200 mM) stress conditions imposed throughout the entire life cycle of the plant. Results revealed that specialized metabolites like artemisinin, arteannuin-B, artemisinic acid + dihydroartemisinic acid and essential oil accumulation were positively modulated by NaCl salinity stress. Interestingly, total content of monoterpenoids and sesquiterpenoids of essential oil was induced by NaCl salinity treatment, contrary to previous observations. Production of camphor, the major essential oil constituent was induced under the influence of treatment. The metabolic acclimation and manifestations specific to terpenoid pathway are analysed vis-a-vis vegetative to reproductive periods and control of the modulation. WRKY and CYP71AV1 play a key role in mediating the responses through metabolism in glandular trichomes. The distinctness of the salinity induced responses is discussed in light of differential mechanism of adaptation to abiotic stresses and their impact on terpenoid-specific metabolic adjustments in A. annua. Results provide potential indications of possible adaptation of A. annua under saline conditions for agrarian techno-economic benefaction.


Assuntos
Aclimatação/efeitos dos fármacos , Artemisia annua/crescimento & desenvolvimento , Artemisia annua/metabolismo , Metaboloma/efeitos dos fármacos , Óleos Voláteis/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Terpenos/metabolismo , Análise de Variância , Artemisia annua/efeitos dos fármacos , Artemisia annua/genética , Artemisininas , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Prolina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Tricomas/efeitos dos fármacos , Tricomas/metabolismo
13.
Biotechnol Adv ; 34(5): 714-739, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27131396

RESUMO

The multigene family of enzymes known as glycosyltransferases or popularly known as GTs catalyze the addition of carbohydrate moiety to a variety of synthetic as well as natural compounds. Glycosylation of plant secondary metabolites is an emerging area of research in drug designing and development. The unsurpassing complexity and diversity among natural products arising due to glycosylation type of alterations including glycodiversification and glycorandomization are emerging as the promising approaches in pharmacological studies. While, some GTs with broad spectrum of substrate specificity are promising candidates for glycoengineering while others with stringent specificity pose limitations in accepting molecules and performing catalysis. With the rising trends in diseases and the efficacy/potential of natural products in their treatment, glycosylation of plant secondary metabolites constitutes a key mechanism in biogeneration of their glycoconjugates possessing medicinal properties. The present review highlights the role of glycosyltransferases in plant secondary metabolism with an overview of their identification strategies, catalytic mechanism and structural studies on plant GTs. Furthermore, the article discusses the biotechnological and biomedical application of GTs ranging from detoxification of xenobiotics and hormone homeostasis to the synthesis of glycoconjugates and crop engineering. The future directions in glycosyltransferase research should focus on the synthesis of bioactive glycoconjugates via metabolic engineering and manipulation of enzyme's active site leading to improved/desirable catalytic properties. The multiple advantages of glycosylation in plant secondary metabolomics highlight the increasing significance of the GTs, and in near future, the enzyme superfamily may serve as promising path for progress in expanding drug targets for pharmacophore discovery and development.


Assuntos
Desenho de Fármacos , Glicoconjugados , Glicosiltransferases , Engenharia Metabólica , Plantas , Proteínas Recombinantes , Plantas/genética , Plantas/metabolismo
14.
PLoS One ; 11(2): e0149691, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919744

RESUMO

Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides.


Assuntos
Transferases Intramoleculares/metabolismo , Withania/metabolismo , Vitanolídeos/metabolismo , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Plantas Geneticamente Modificadas , Interferência de RNA , Withania/genética
15.
Protoplasma ; 252(6): 1421-37, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25687294

RESUMO

Cytochrome P450s (CYPs) catalyse a wide variety of oxygenation/hydroxylation reactions that facilitate diverse metabolic functions in plants. Specific CYP families are essential for the biosynthesis of species-specialized metabolites. Therefore, we investigated the role of different CYPs related to secondary metabolism in Withania somnifera, a medicinally important plant of the Indian subcontinent. In this study, complete complementary DNAs (cDNAs) of four different CYP genes were isolated and christened as WSCYP93Id, WSCYP93Sm, WSCYP734B and WSCYP734R. These cDNAs encoded polypeptides comprising of 498, 496, 522 and 550 amino acid residues with their deduced molecular mass of 56.7, 56.9, 59.4 and 62.2 kDa, respectively. Phylogenetic study and molecular modelling analysis of the four cloned WSCYPs revealed their categorization into two CYP families (CYP83B1 and CYP734A1) belonging to CYP71 and CYP72 clans, respectively. BLASTp searches showed similarity of 75 and 56 %, respectively, between the two CYP members of CYP83B1 and CYP734A1 with major variances exhibited in their N-terminal regions. The two pairs of homologues exhibited differential expression profiles in the leaf tissues of selected chemotypes of W. somnifera as well as in response to treatments such as methyl jasmonate, wounding, light and auxin. Light and auxin regulated two pairs of WSCYP homologues in a developing seedling in an interesting differential manner. Their lesser resemblance and homology with other CYP sequences suggested these genes to be more specialized and distinct ones. The results on chemotype-specific expression patterns of the four genes strongly suggested their key/specialized involvement of the CYPs in the biosynthesis of chemotype-specific metabolites, though their further biochemical characterization would reveal the specificity in more detail. It is revealed that WSCYP93Id and WSCYP93Sm may be broadly involved in the oxygenation reactions in the plant and, thereby, control various pathways involving such metabolic reactions in the plant. As a representative experimental validation of this notion, WSCYP93Id was heterologouly expressed in Escherichia coli and catalytic capabilities of the recombinant WSCYP93Id protein were evaluated using withanolides as substrates. Optimized assays with some major withanolides (withanone, withaferin A and withanolide A) involving spectrophotometric as well as high-pressure liquid chromatography (HPLC)-based evaluation (product detection) of the reactions showed conversion of withaferin A to a hydroxylated product. The genes belonging to other CYP group are possibly involved in some specialised synthesis such as that of brassinosteroids.


Assuntos
Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Indolacéticos/farmacologia , Luz , Modelos Moleculares , Proteínas de Plantas/metabolismo , Withania/enzimologia , Biotransformação , Biologia Computacional , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Bases de Dados Genéticas , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidroxilação , Isoenzimas , Filogenia , Proteínas de Plantas/genética , Plantas Medicinais , Conformação Proteica , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Relação Estrutura-Atividade , Especificidade por Substrato , Withania/efeitos dos fármacos , Withania/genética , Withania/efeitos da radiação , Vitanolídeos/metabolismo
16.
Nutrition ; 31(1): 205-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25466667

RESUMO

OBJECTIVE: Bone protective effects of withaferin A (WFA) from leaves of Withania somnifera (L.) were evaluated in preventive model of Balb/c mice with 17 ß-estradiol (E2) and alendronate (ALD). METHODS: Adult female Balb/c mice, 7 to 9 wk, were bilaterally ovariectomized (OVx) to mimic the state of E2 deficiency. Immediately after surgery mice were administrated WFA at doses of 1, 5, 10 mg/kg/d while other two OVx groups received ALD or E2 for 2 mo. Sham and OVx groups with vehicle and no treatment served as controls. RESULTS: WFA administration increased new bone formation, as well as improving microarchitecture and biomechanical strength of the bones. It prevented bone loss by reducing expression of osteoclastic genes tartrate resistant acid phosphatase (TRAP) and receptor activator of nuclear factor κ B (RANK). Increase in bone turnover marker, osteocalcin (OCN) and inflammatory cytokine tumor necrosis factor-alpha (TNF-α) because of ovariectomy were reduced with WFA treatment, with effects comparable to E2 administration. Histomorphometric analysis of uterus shows that WFA was not fraught with estrogenic or antiestrogenic effects. At cellular level, WFA promoted differentiation of bone marrow cells (BMCs) and increased mineralization by inducing expression of osteogenic genes. WFA has bone protective potential as its treatment prevents bone loss that is comparable to ALD and E2. CONCLUSIONS: It is surmised that WFA in preclinical setting is effective in preserving bone loss by both inhibition of resorption and stimulation of new bone formation before onset of osteoporosis with no uterine hyperplasia.


Assuntos
Alendronato/farmacologia , Estradiol/farmacologia , Osteoporose/prevenção & controle , Plantas Medicinais/química , Withania/química , Vitanolídeos/farmacologia , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Animais , Biomarcadores/sangue , Osso e Ossos/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Feminino , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Osteocalcina/sangue , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ovariectomia , Folhas de Planta/química , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Fosfatase Ácida Resistente a Tartarato , Fator de Necrose Tumoral alfa/sangue
17.
Biomed Res Int ; 2014: 934351, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250339

RESUMO

Gymnema sylvestre R.Br., a pharmacologically important herb vernacularly called Gur-Mar (sugar eliminator), is widely known for its antidiabetic action. This property of the herb has been attributed to the presence of bioactive triterpene glycosides. Although some information regarding pharmacology and phytochemical profiles of the plant are available, no attempts have been made so far to decipher the biosynthetic pathway and key enzymes involved in biosynthesis of steryl glucosides. The present report deals with the identification and catalytic characterization of a glucosyltransferase, catalyzing biosynthesis of steryl glycosides. The full length cDNA (2572 bp) contained an open reading frame of 2106 nucleotides that encoded a 701 amino acid protein, falling into GT-B subfamily of glycosyltransferases. The GsSGT was expressed in Escherichia coli and biochemical characterization of the recombinant enzyme suggested its key role in the biosynthesis of steryl glucosides with catalytic preference for C-3 hydroxyl group of sterols. To our knowledge, this pertains to be the first report on cloning and biochemical characterization of a sterol metabolism gene from G. sylvestre R.Br. catalyzing glucosylation of a variety of sterols of biological origin from diverse organisms such as bacteria, fungi, and plants.


Assuntos
Escherichia coli/fisiologia , Glucosídeos/química , Glucosiltransferases/biossíntese , Glucosiltransferases/química , Gymnema sylvestre/fisiologia , Proteínas Recombinantes/química , Sequência de Aminoácidos , Catálise , Clonagem Molecular/métodos , Ativação Enzimática , Estabilidade Enzimática , Glucosiltransferases/genética , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
18.
Biomed Res Int ; 2014: 830285, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24511547

RESUMO

Gymnema sylvestre (Asclepiadaceae), popularly known as "gurmar" for its distinct property as sugar destroyer, is a reputed herb in the Ayurvedic system of medicine. The phytoconstituents responsible for sweet suppression activity includes triterpene saponins known as gymnemic acids, gymnemasaponins, and a polypeptide, gurmarin. The herb exhibits a broad range of therapeutic effects as an effective natural remedy for diabetes, besides being used for arthritis, diuretic, anemia, osteoporosis, hypercholesterolemia, cardiopathy, asthma, constipation, microbial infections, indigestion, and anti-inflammatory. G. sylvestre has good prospects in the treatment of diabetes as it shows positive effects on blood sugar homeostasis, controls sugar cravings, and promotes regeneration of pancreas. The herbal extract is used in dietary supplements since it reduces body weight, blood cholesterol, and triglyceride levels and holds great prospects in dietary as well as pharmacological applications. This review explores the transition of a traditional therapeutic to a modern contemporary medication with an overview of phytochemistry and pharmacological activities of the herb and its phytoconstituents.


Assuntos
Gymnema sylvestre , Extratos Vegetais , Plantas Medicinais , Animais , Anti-Infecciosos , Antineoplásicos , Humanos , Hipoglicemiantes , Ayurveda , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Substâncias Protetoras , Ratos
19.
Protoplasma ; 251(5): 1031-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24510215

RESUMO

Withania somnifera is one of the most important medicinal plant and is credited with various pharmacological activities. In this study, in vitro multiple shoot cultures were exposed to different concentrations (5-300 µM) of cadmium (Cd) as cadmium sulphate to explore its ability to accumulate the heavy metal ion and its impact on the metabolic status and adaptive responses. The results showed that supplemental exposure to Cd interfered with N, P, and K uptake creating N, P, and K deficiency at higher doses of Cd that also caused stunting of growth, chlorosis, and necrosis. The study showed that in vitro shoots could markedly accumulate Cd in a concentration-dependent manner. Enzymatic activities and isozymic pattern of catalase, ascorbate peroxidase, guaiacol peroxidase, peroxidase, glutathione-S-transferase, glutathione peroxidase, monodehydroascorbate reductase, and dehydroascorbate reductase were altered substantially under Cd exposure. Sugar metabolism was also markedly modulated under Cd stress. Various other parameters including contents of photosynthetic pigments, phenolics, tocopherol, flavonoids, reduced glutathione, nonprotein thiol, ascorbate, and proline displayed major inductive responses reflecting their protective role. The results showed that interplay of enzymatic as well as nonenzymatic responses constituted a system endeavor of tolerance of Cd accumulation and an efficient scavenging strategy of its stress implications.


Assuntos
Compostos de Cádmio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/metabolismo , Sulfatos/farmacologia , Withania/enzimologia , Antioxidantes/metabolismo , Transporte Biológico/efeitos dos fármacos , Metabolismo dos Carboidratos , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Necrose/induzido quimicamente , Nitrogênio/metabolismo , Fósforo/metabolismo , Potássio/metabolismo , Espécies Reativas de Oxigênio , Withania/metabolismo
20.
Mol Biol Rep ; 41(5): 3147-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24477588

RESUMO

Azadirachta indica (neem) is a medicinally important plant that is valued for its bioactive secondary metabolites. Higher levels of the bioactive phytochemicals are accumulated in fruits than in other tissues. In the present study, a total of 387 and 512 ESTs, respectively, from endocarp and mesocarp of neem fruits were isolated and analyzed. Out of them 318 ESTs (82.17%) clones from endocarp and 418 ESTs (81.64%) from mesocarp encoded putative proteins that could be classified into three major gene ontology categories: biological process, molecular function and cellular component. From the analyses of contigs, 73 unigenes from the forward subtracted library and 35 unigenes from the reverse subtracted library were obtained. The ESTs from mesocarp encoded cytochrome P450 enzymes, which indicated hydroxylation to be a major metabolic event and that biogeneration of hydroxylated neem fruit phytochemicals was differentially regulated with developmental stage-specificity of synthesis. Through this study, we present the first report of any gene expression data in neem tissues. Neem hydroxy-methyl glutaryl-coenzyme A reductase (NHMGR) gene was used as expressing control vis-a-vis subtracted tissues. NHMGR was present in fruit, endocarp and mesocarp tissues, but absent in subtractive libraries, revealing that it was successfully eliminated during subtraction. Eight genes of interest from subtracted libraries were profiled for their expression in fruit, mesocarp and endocarp. Expression profiles validated the quality of the libraries and functional diversity of the tissues. The subtractive cDNA library and EST database described in this study represent a valuable transcript sequence resource for future research aimed at improving the economically important medicinal plant.


Assuntos
Azadirachta/genética , Azadirachta/metabolismo , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolismo Secundário , Sequência de Aminoácidos , Análise por Conglomerados , Biologia Computacional , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genes de Plantas , Dados de Sequência Molecular , Filogenia , Reprodutibilidade dos Testes , Alinhamento de Sequência , Técnicas de Hibridização Subtrativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA