Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; : 1-21, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718083

RESUMO

Alopecia areata (AA) is a chronic autoimmune disease characterized by bald patches in certain areas of the body, especially the scalp. Minoxidil (MNX), as a first-line treatment of AA, effectively induces hair growth. However, oral and topical administration pose problems, including low bioavailability, risk of uncontrolled hair growth, and local side effects such as burning hair loss, and scalp irritation. In the latest research, MNX was delivered to the skin via microneedle (MN) transdermally. The MNX concentration was distributed throughout the needle so that drug penetration was reduced and had the potential to irritate. In this study, we formulated MNX into three-layer dissolving microneedles (TDMN) to increase drug penetration and avoid irritation. Physicochemical evaluation, parafilm, was used to evaluate the mechanical strength of TDMN and showed that TDMN could penetrate the stratum corneum. The ex-vivo permeation test showed that the highest average permeation result was obtained for TDMN2, namely 165.28 ± 31.87 ug/cm2, while for Minoxidil cream it was 46.03 ± 8.5 ug/cm2. The results of ex vivo and in vivo dermatokinetic tests showed that the amount of drug concentration remaining in the skin from the TDMN2 formula was higher compared to the cream preparation. The formula developed has no potential for irritation and toxicity based on the HET-CAM test and hemolysis test. TDMN is a promising alternative to administering MNX to overcome MNX problems and increase the effectiveness of AA therapy.

2.
Ann Pharm Fr ; 82(3): 531-544, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135037

RESUMO

Alopecia areata (AA) is an autoimmune-induced hair loss condition, by utilizing MNX, a hair growth-promoting compound. However, minoxidil (MNX) administration's efficacy is hindered by low bioavailability and adverse effects. To enhance its delivery, Trilayer Dissolving Microneedles (TDMN) are introduced, enabling controlled drug release. The study's primary was to establish a validated UV-Vis Spectrophotometer method for Minoxidil analysis in rat skin affected by alopecia areata. This method adheres to International Conference Harmonization (ICH) and FDA guidelines, encompassing accuracy, precision, linearity, quantification limit (QL), and detection limit (DL). The validation method was conducted through two approaches, namely UV region validation using PBS and the colorimetric method in the visible region (Vis). The validated approach is then employed for assessing in vitro release, ex vivo permeation, and in vivo pharmacokinetics. Results indicate superior MNX extraction recovery using methanol compared to acetonitrile. Method C (5mL methanol) is optimal, offering high recovery with minimal solvent usage. Precision assessments demonstrate %RSD values within MNX guidelines (≤15%), affirming accuracy and reproducibility. UV-Vis spectroscopy quantifies MNX integration into TDMN, using PVA-PVP, with concentrations aligning with ICH standards (95% to 105%). In conclusion, TDMN holds promise for enhancing MNX delivery, mitigating bioavailability and side effect challenges. The validated UV-Vis Spectrophotometer method effectively analyzes MNX in skin tissues, providing insights into AA treatment and establishing a robust analytical foundation for future studies.


Assuntos
Alopecia em Áreas , Minoxidil , Animais , Ratos , Minoxidil/uso terapêutico , Alopecia em Áreas/diagnóstico , Alopecia em Áreas/tratamento farmacológico , Colorimetria , Reprodutibilidade dos Testes , Metanol/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA