Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Saudi J Biol Sci ; 31(4): 103963, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425782

RESUMO

In terms of the economics and public health, chronic wounds exert a significant detrimental impact on the health care system. Bacterial infections, which cause the formation of highly resistant biofilms that elude standard antibiotics, are the main cause of chronic, non-healing wounds. Numerous studies have shown that phytochemicals are effective in treating a variety of diseases, and traditional medicinal plants often include important chemical groups such alkaloids, phenolics, tannins, terpenes, steroids, flavonoids, glycosides, and fatty acids. These substances are essential for scavenging free radicals which helps in reducing inflammation, fending off infections, and hastening the healing of wounds. Bacterial species can survive in chronic wound conditions because biofilms employ quorum sensing as a communication technique which regulates the expression of virulence components. Fortunately, several phytochemicals have anti-QS characteristics that efficiently block QS pathways, prevent drug-resistant strains, and reduce biofilm development in chronic wounds. This review emphasizes the potential of phytocompounds as crucial agents for alleviating bacterial infections and promoting wound healing by reducing the inflammation in chronic wounds, exhibiting potential avenues for future therapeutic approaches to mitigate the healthcare burden provided by these challenging conditions.

2.
Curr Pharm Des ; 28(41): 3337-3350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35466870

RESUMO

The marine microenvironment harbors many unique species of organisms that produce a plethora of compounds that help mankind cure a wide range of diseases. The diversity of products from the ocean bed serves as potentially healing materials and inert vehicles carrying the drug of interest to the target site. Several composites still lay undiscovered under the blue canopy, which can provide treatment for untreated diseases that keep haunting the earth periodically. Cancer is one such disease that has been of interest to several eminent scientists worldwide due to the heterogenic complexity involved in the disease's pathophysiology. Due to extensive globalization and environmental changes, cancer has become a lifestyle disease continuously increasing exponentially in the current decade. This ailment requires a definite remedy that treats by causing minimal damage to the body's normal cells. The application of nanotechnology in medicine has opened up new avenues of research in targeted therapeutics due to their highly malleable characteristics. Marine waters contain an immense ionic environment that succors the production of distinct nanomaterials with exceptional character, yielding highly flexible molecules to modify, thus facilitating the engineering of targeted biomolecules. This review provides a short insight into an array of marine biomolecules that can be probed into cancer nanotherapeutics sparing healthy cells.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Materiais Biocompatíveis , Nanotecnologia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
3.
Genes (Basel) ; 13(3)2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35328017

RESUMO

BACKGROUND: The most often diagnosed malignancy in women worldwide is cancer of the cervix. It is also the most prevalent kind of gynecological cancer in women. This cancer originates in the opening of the cervix and spreads through sexual contact. Even though human papillomavirus (HPV) may not cause cancer immediately, it does develop over time as a result of the virus's lengthy persistence to cause dysplastic changes overtime, particularly in high-risk kinds. The primary objective of this research is to see if miRNAs are dysregulated as a result of treatment resistance in cervical cancer (CC). The aim is to see if these microRNAs may be utilized as biomarkers for detecting chemoresistance in CC, particularly for clinical applications. METHODS: The recommended protocol for comprehensive study and meta-analysis (PRISMA-P) standards will be utilized for the analysis and data interpretation. The bibliographic databases will be methodically searched using a combination of search keywords. Based on established inclusion and exclusion criteria, the acquired findings will be reviewed, and data retrieved from the selected scientific papers for systematic review. We will then construct a forest from the pooled Hazard ratio (HR) and 95% C.I. values, data obtained using the random-effects model. DISCUSSION: The focus of this study is to identify the function of miRNAs as a chemoresistance regulator and determine if they have the potential scope to be considered as biomarkers for cervical cancer. Through this systematic review and meta-analysis, the goal is to collect, compare, and analyze the data pertaining to the role of miRNAs in cervical cancer, thereby, enabling us to understand the role they play in chemosensitivity.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Biomarcadores Tumorais/genética , Feminino , Humanos , Metanálise como Assunto , MicroRNAs/genética , Prognóstico , Revisões Sistemáticas como Assunto , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética
4.
Cell Biochem Biophys ; 79(2): 201-219, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33555556

RESUMO

Epimerase-deficiency galactosemia (EDG) is caused by mutations in the UDP-galactose 4'-epimerase enzyme, encoded by gene GALE. Catalyzing the last reaction in the Leloir pathway, UDP-galactose-4-epimerase catalyzes the interconversion of UDP-galactose and UDP-glucose. This study aimed to use in-depth computational strategies to prioritize the pathogenic missense mutations in GALE protein and investigate the systemic behavior, conformational spaces, atomic motions, and cross-correlation matrix of the GALE protein. We searched four databases (dbSNP, ClinVar, UniProt, and HGMD) and major biological literature databases (PubMed, Science Direct, and Google Scholar), for missense mutations that are associated with EDG patients, our search yielded 190 missense mutations. We applied a systematic computational prediction pipeline, including pathogenicity, stability, biochemical, conservational, protein residue contacts, and structural analysis, to predict the pathogenicity of these mutations. We found three mutations (p.K161N, p.R239W, and p.G302D) with a severe phenotype in patients with EDG that correlated with our computational prediction analysis; thus, they were selected for further structural and simulation analyses to compute the flexibility and stability of the mutant GALE proteins. The three mutants were subjected to molecular dynamics simulation (MDS) with native protein for 200 ns using GROMACS. The MDS demonstrated that these mutations affected the beta-sheets and helical region that are responsible for the catalytic activity; subsequently, affects the stability and flexibility of the mutant proteins along with a decrease and more deviations in compactness when compared to that of a native. Also, three mutations created major variations in the combined atomic motions of the catalytic and C-terminal regions. The network analysis of the residues in the native and three mutant protein structures showed disturbed residue contacts occurred owing to the missense mutations. Our findings help to understand the structural behavior of a protein owing to mutation and are intended to serve as a platform for prioritizing mutations, which could be potential targets for drug discovery and development of targeted therapeutics.


Assuntos
Galactosemias/patologia , UDPglucose 4-Epimerase/química , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Bases de Dados de Proteínas , Galactosemias/genética , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , NAD/química , NAD/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Estabilidade Proteica , Especificidade por Substrato , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo
5.
Molecules ; 25(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255942

RESUMO

Filamins (FLN) are a family of actin-binding proteins involved in regulating the cytoskeleton and signaling phenomenon by developing a network with F-actin and FLN-binding partners. The FLN family comprises three conserved isoforms in mammals: FLNA, FLNB, and FLNC. FLNB is a multidomain monomer protein with domains containing an actin-binding N-terminal domain (ABD 1-242), encompassing two calponin-homology domains (assigned CH1 and CH2). Primary variants in FLNB mostly occur in the domain (CH2) and surrounding the hinge-1 region. The four autosomal dominant disorders that are associated with FLNB variants are Larsen syndrome, atelosteogenesis type I (AOI), atelosteogenesis type III (AOIII), and boomerang dysplasia (BD). Despite the intense clustering of FLNB variants contributing to the LS-AO-BD disorders, the genotype-phenotype correlation is still enigmatic. In silico prediction tools and molecular dynamics simulation (MDS) approaches have offered the potential for variant classification and pathogenicity predictions. We retrieved 285 FLNB missense variants from the UniProt, ClinVar, and HGMD databases in the current study. Of these, five and 39 variants were located in the CH1 and CH2 domains, respectively. These variants were subjected to various pathogenicity and stability prediction tools, evolutionary and conservation analyses, and biophysical and physicochemical properties analyses. Molecular dynamics simulation (MDS) was performed on the three candidate variants in the CH2 domain (W148R, F161C, and L171R) that were predicted to be the most pathogenic. The MDS analysis results showed that these three variants are highly compact compared to the native protein, suggesting that they could affect the protein on the structural and functional levels. The computational approach demonstrates the differences between the FLNB mutants and the wild type in a structural and functional context. Our findings expand our knowledge on the genotype-phenotype correlation in FLNB-related LS-AO-BD disorders on the molecular level, which may pave the way for optimizing drug therapy by integrating precision medicine.


Assuntos
Proteínas de Ligação ao Cálcio/química , Filaminas/química , Proteínas dos Microfilamentos/química , Modelos Moleculares , Domínios Proteicos , Fenômenos Químicos , Nanismo/etiologia , Evolução Molecular , Fácies , Filaminas/genética , Filaminas/metabolismo , Variação Genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Osteocondrodisplasias/etiologia , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Solventes/química , Relação Estrutura-Atividade , Calponinas
6.
Front Genet ; 11: 734, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760426

RESUMO

Background and Aims: Familial hypercholesterolemia (FH) is one of the major risk factor for the progression of atherosclerosis and coronary artery disease. This study focused on identifying the dysregulated molecular pathways and core genes that are differentially regulated in FH and to identify the possible genetic factors and potential underlying mechanisms that increase the risk to atherosclerosis in patients with FH. Methods: The Affymetrix microarray dataset (GSE13985) from the GEO database and the GEO2R statistical tool were used to identify the differentially expressed genes (DEGs) from the white blood cells (WBCs) of five heterozygous FH patients and five healthy controls. The interaction between the DEGs was identified by applying the STRING tool and visualized using Cytoscape software. MCODE was used to determine the gene cluster in the interactive networks. The identified DEGs were subjected to the DAVID v6.8 webserver and ClueGo/CluePedia for functional annotation, such as gene ontology (GO) and enriched molecular pathway analysis of DEGs. Results: We investigated the top 250 significant DEGs (p-value < 0.05; fold two change ≥ 1 or ≤ -1). The GO analysis of DEGs with significant differences revealed that they are involved in critical biological processes and molecular pathways, such as myeloid cell differentiation, peptidyl-lysine modification, signaling pathway of MyD88-dependent Toll-like receptor, and cell-cell adhesion. The analysis of enriched KEGG pathways revealed the association of the DEGs in ubiquitin-mediated proteolysis and cardiac muscle contraction. The genes involved in the molecular pathways were shown to be differentially regulated by either activating or inhibiting the genes that are essential for the canonical signaling pathways. Our study identified seven core genes (UQCR11, UBE2N, ADD1, TLN1, IRAK3, LY96, and MAP3K1) that are strongly linked to FH and lead to a higher risk of atherosclerosis. Conclusion: We identified seven core genes that represent potential molecular biomarkers for the diagnosis of atherosclerosis and might serve as a platform for developing therapeutics against both FH and atherosclerosis. However, functional studies are further needed to validate their role in the pathogenesis of FH and atherosclerosis.

7.
Adv Protein Chem Struct Biol ; 120: 349-377, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32085885

RESUMO

Sjögren-Larsson syndrome (SLS) is an autoimmune disorder inherited in an autosomal recessive pattern. To date, 80 missense mutations have been identified in association with the Aldehyde Dehydrogenase 3 Family Member A2 (ALDH3A2) gene causing SLS. Disruption of the function of ALDH3A2 leads to excessive accumulation of fat in the cells, which interferes with the normal function of protective membranes or materials that are necessary for the body to function normally. We retrieved 54 missense mutations in the ALDH3A2 from the OMIM, UniProt, dbSNP, and HGMD databases that are known to cause SLS. These mutations were examined with various in silico stability tools, which predicted that the mutations p.S308N and p.R423H that are located at the protein-protein interaction domains are the most destabilizing. Furthermore, to determine the atomistic-level differences within the protein-protein interactions owing to mutations, we performed macromolecular simulation (MMS) using GROMACS to validate the motion patterns and dynamic behavior of the biological system. We found that both mutations (p.S380N and p.R423H) had significant effects on the protein-protein interaction and disrupted the dimeric interactions. The computational pipeline provided in this study helps to elucidate the potential structural and functional differences between the ALDH3A2 native and mutant homodimeric proteins, and will pave the way for drug discovery against specific targets in the SLS patients.


Assuntos
Aldeído Oxirredutases/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Síndrome de Sjogren-Larsson/genética , Aldeído Oxirredutases/química , Algoritmos , Bases de Dados Genéticas , Humanos , Mutação de Sentido Incorreto , Ligação Proteica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA